E4056963
初始化
慕妹3532038
慕用4325741
2.0以上版本把代码改为:
optimizer = tf.compat.v1.train.AdamOptimizer(1e-4)
train = optimizer.minimize(loss)
qq_慕丝1076907
版本问题
在2.x 版本中应为 tf.random.normal
qq_三斤_0
# 我改成了这样可以运行
for i in range(m):
#获取一部电影评分用户的id
ids = np.nonzero(record[i])[0]
#ids = record[i,:] != 0
rating_mean[i] = np.mean(rating[i,ids])
#rating_norm[i,ids] -= rating_mean[i]
rating_norm[i,ids] = rating[i,ids] - rating_mean[i]
print("The row is {},mean rating is {},rating user size is {}"
.format(i,rating_mean[i],ids.shape))
慕粉6253408
原始条件只需要用户评分表这一张表就好了。用户喜好矩阵和电影内容矩阵都是要求解的对象。
qq_T_143
movies_mean = np.sum(rating, axis=1) / np.sum(rating!=0, axis=1)
rating -= movies_mean.reshape(-1, 1)
理科喵
兄弟们,报错的是
rating_mean[i] = np.mean(rating[i, idx])
这一行代码的np.mean(rating[i, idx]) 部分,索引报错。不是下一行的公式问题