请教一下Hadoop中Map的数量是如何确定的?

Hadoop中Map的数量是如何确定的


慕运维8079593
浏览 1130回答 3
3回答

宝慕林4294392

一般情况下,都为1,特殊情况除外。minSize:取的1和mapred.min.split.size中较大的一个。blockSize:HDFS的块大小,默认为64M,一般大的HDFS都设置成128M。splitSize:就是最终每个Split的大小,那么Map的数量基本上就是totalSize/splitSize。接下来看看computeSplitSize的逻辑:首先在goalSize(期望每个Mapper处理的数据量)和HDFS的block size中取较小的,然后与mapred.min.split.size相比取较大的。有了2的分析,下面调整Map的数量就很容易了。3.1 减小Map-Reduce job 启动时创建的Mapper数量当处理大批量的大数据时,一种常见的情况是job启动的mapper数量太多而超出了系统限制,导致Hadoop抛出异常终止执行。解决这种异常的思路是减少mapper的数量。具体如下:3.1.1 输入文件size巨大,但不是小文件这种情况可以通过增大每个mapper的input size,即增大minSize或者增大blockSize来减少所需的mapper的数量。增大blockSize通常不可行,因为当HDFS被hadoop namenode -format之后,blockSize就已经确定了(由格式化时dfs.block.size决定),如果要更改blockSize,需要重新格式化HDFS,这样当然会丢失已有的数据。所以通常情况下只能通过增大minSize,即增大mapred.min.split.size的值。3.1.2 输入文件数量巨大,且都是小文件
打开App,查看更多内容
随时随地看视频慕课网APP