java.io.IOException: No input paths specified in job

来源:3-3 mapreduce实现矩阵相乘(2)

neocyl

2019-04-25 15:29

log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).

log4j:WARN Please initialize the log4j system properly.

log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

java.io.IOException: No input paths specified in job

step1运行失败~~~

at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.listStatus(FileInputFormat.java:239)

at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.getSplits(FileInputFormat.java:387)

at org.apache.hadoop.mapreduce.JobSubmitter.writeNewSplits(JobSubmitter.java:301)

at org.apache.hadoop.mapreduce.JobSubmitter.writeSplits(JobSubmitter.java:318)

at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:196)

at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1290)

at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1287)

at java.security.AccessController.doPrivileged(Native Method)

at javax.security.auth.Subject.doAs(Unknown Source)

at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1758)

at org.apache.hadoop.mapreduce.Job.submit(Job.java:1287)

请问一下各位大神,这个情况有遇到的吗?百度了各种情况,都 没有解决,

https://img3.mukewang.com/5cc161da0001916504000257.jpg

写回答 关注

5回答

  • 慕粉218578
    2019-07-31 13:51:02

    你的主机名是localhost找host文件的时候,转为在你的运行电脑上,也就是本机,并不是虚拟机,所以就没有那个文件,建议修改虚拟机主机名,或者修改hosts文件。

  • Blossom7
    2019-05-05 08:36:25

    没有,它变成了另外一个错误,你要在编译器中连接虚拟机,还要添加相关的矩阵文件

  • Blossom7
    2019-04-25 16:28:42

    好像不是这个原因


    Blosso... 回复neocyl

    你解决了吗

    2019-05-05 20:59:57

    共 2 条回复 >

  • Blossom7
    2019-04-25 16:21:43

    我也有这个问题,我在想是不是虚拟机连接问题

  • neocyl
    2019-04-25 15:31:18

    package step1;


    import java.io.IOException;


    import org.apache.hadoop.conf.Configuration;

    import org.apache.hadoop.fs.FileSystem;

    import org.apache.hadoop.fs.Path;

    import org.apache.hadoop.io.Text;


    import org.apache.hadoop.mapreduce.Job;

    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


    public class MR1 {

        //输入文件相对路径

    private static String inPath = "/matrix/step1_input/matrix_2.txt";

    //输出文件的相对路径

    private static String outPath = "/matrix/step1_output";

    //hdfs的地址

    private static String hdfs = "hdfs://localhost:9000";

    public int run() {

    try {

    //创建job配置类

    Configuration conf = new Configuration();

    //设置hdfs的地址

    conf.set("cf.defaultFS", hdfs);

    //创建一个job实例

    Job job = Job.getInstance(conf,"step1");

    //设置job 的主类

    job.setJarByClass(MR1.class);

    //设置job 的mapper类及reducer类

    job.setMapperClass(Mapper1.class);

    job.setReducerClass(Reducer1.class);

    //设置mapper输出的类型

    job.setMapOutputKeyClass(Text.class);

    job.setMapOutputValueClass(Text.class);

    //设置reducer输出类型

    job.setOutputKeyClass(Text.class);

    job.setOutputValueClass(Text.class);

    FileSystem fs =FileSystem.get(conf);

    //设置输入和输出路径

    Path inputPath = new Path(inPath);

    if(fs.exists(inputPath)) {

    FileInputFormat.addInputPath(job, inputPath);

    }

    Path outputPath = new Path(outPath);

    fs.delete(outputPath,true);

     

    FileOutputFormat.setOutputPath(job, outputPath);

    return job.waitForCompletion(true)?1:-1;

    } catch (IOException | ClassNotFoundException | InterruptedException e) {

    e.printStackTrace();

    }

    return -1;

    }

    public static void main(String[] args) {

    int result = -1;

    result =new MR1().run();

    if(result == 1) {

    System.out.println("step1运行成功~~~");

    }else if(result == -1) {

    System.out.println("step1运行失败~~~");

    }

    }

    }

    贴上源码

Hadoop进阶

MapReduce原理,并实现简单的推荐

24219 学习 · 68 问题

查看课程

相似问题