Dense全连接层
Activation激活层
SGD随机梯度下降算法
标签先独热码化
给你们代码,写的啥咱也不知道,咱也不敢问
#
__author__ = 'aaron'
__date__ = '7/20/2019 11:19 AM'
import numpy
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import SGD
def main():
from sklearn.datasets import load_iris
iris = load_iris()
print(iris["target"])
from sklearn.preprocessing import LabelBinarizer
print(LabelBinarizer().fit_transform(iris["target"]))
from sklearn.model_selection import train_test_split
train_data, test_data, train_target, test_target = train_test_split(iris.data, iris.target, test_size=0.2, random_state=1)
labels_train = LabelBinarizer().fit_transform(train_target)
labels_test = LabelBinarizer().fit_transform(test_target)
model = Sequential(
[
Dense(5, input_dim=4),
Activation("relu"),
Dense(3),
Activation("sigmoid"),
]
)
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss="categorical_crossentropy")
model.fit(train_data, labels_train, nb_epoch=200, batch_size=40)
print(model.predict_classes(test_data))
if __name__ == "__main__":
main()
由于Anaconda不包含keras,所以需要额外安装,操作如下:

markmark
keras安装