有了上一篇《.NET Core玩转机器学习》打基础,这一次我们以纽约出租车费的预测做为新的场景案例,来体验一下回归模型。
场景概述
我们的目标是预测纽约的出租车费,乍一看似乎仅仅取决于行程的距离和时长,然而纽约的出租车供应商对其他因素,如额外的乘客数、信用卡而不是现金支付等,会综合考虑而收取不同数额的费用。纽约市官方给出了一份样本数据。
确定策略
为了能够预测出租车费,我们选择通过机器学习建立一个回归模型。使用官方提供的真实数据进行拟合,在训练模型的过程中确定真正能影响出租车费的决定性特征。在获得模型后,对模型进行评估验证,如果偏差在接受的范围内,就以这个模型来对新的数据进行预测。
解决方案
创建项目
看过上一篇文章的读者,就比较轻车熟路了,推荐使用Visual Studio 2017创建一个.NET Core的控制台应用程序项目,命名为TaxiFarePrediction。使用NuGet包管理工具添加对Microsoft.ML的引用。
准备数据集
下载训练数据集taxi-fare-train.csv和验证数据集taxi-fare-test.csv,数据集的内容类似为:
vendor_id,rate_code,passenger_count,trip_time_in_secs,trip_distance,payment_type,fare_amount VTS,1,1,1140,3.75,CRD,15.5 VTS,1,1,480,2.72,CRD,10.0 VTS,1,1,1680,7.8,CSH,26.5 VTS,1,1,600,4.73,CSH,14.5 VTS,1,1,600,2.18,CRD,9.5
...
对字段简单说明一下:
字段名 含义 说明 vendor_id 供应商编号 特征值 rate_code 比率码 特征值 passenger_count 乘客人数 特征值 trip_time_in_secs 行程时长 特征值 trip_distance 行程距离 特征值 payment_type 支付类型 特征值 fare_amount 费用 目标值 在项目中添加一个Data目录,将两份数据集复制到该目录下,对文件属性设置“复制到输出目录”。
定义数据类型和路径
首先声明相关的包引用。
using System; using Microsoft.ML.Models; using Microsoft.ML.Runtime; using Microsoft.ML.Runtime.Api; using Microsoft.ML.Trainers; using Microsoft.ML.Transforms; using System.Collections.Generic; using System.Linq; using Microsoft.ML;
在Main函数的上方定义一些使用到的常量。
const string DataPath = @".\Data\taxi-fare-test.csv";const string TestDataPath = @".\Data\taxi-fare-train.csv";const string ModelPath = @".\Models\Model.zip";const string ModelDirectory = @".\Models";
接下来定义一些使用到的数据类型,以及和数据集中每一行的位置对应关系。
public class TaxiTrip { [Column(ordinal: "0")] public string vendor_id; [Column(ordinal: "1")] public string rate_code; [Column(ordinal: "2")] public float passenger_count; [Column(ordinal: "3")] public float trip_time_in_secs; [Column(ordinal: "4")] public float trip_distance; [Column(ordinal: "5")] public string payment_type; [Column(ordinal: "6")] public float fare_amount; } public class TaxiTripFarePrediction { [ColumnName("Score")] public float fare_amount; } static class TestTrips { internal static readonly TaxiTrip Trip1 = new TaxiTrip { vendor_id = "VTS", rate_code = "1", passenger_count = 1, trip_distance = 10.33f, payment_type = "CSH", fare_amount = 0 // predict it. actual = 29.5 }; }
创建处理过程
创建一个Train方法,定义对数据集的处理过程,随后声明一个模型接收训练后的结果,在返回前把模型保存到指定的位置,以便以后直接取出来使用不需要再重新训练。
public static async Task<PredictionModel<TaxiTrip, TaxiTripFarePrediction>> Train() { var pipeline = new LearningPipeline(); pipeline.Add(new TextLoader<TaxiTrip>(DataPath, useHeader: true, separator: ",")); pipeline.Add(new ColumnCopier(("fare_amount", "Label"))); pipeline.Add(new CategoricalOneHotVectorizer("vendor_id", "rate_code", "payment_type")); pipeline.Add(new ColumnConcatenator("Features", "vendor_id", "rate_code", "passenger_count", "trip_distance", "payment_type")); pipeline.Add(new FastTreeRegressor()); PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = pipeline.Train<TaxiTrip, TaxiTripFarePrediction>(); if (!Directory.Exists(ModelDirectory)) { Directory.CreateDirectory(ModelDirectory); } await model.WriteAsync(ModelPath); return model; }
评估验证模型
创建一个Evaluate方法,对训练后的模型进行验证评估。
public static void Evaluate(PredictionModel<TaxiTrip, TaxiTripFarePrediction> model) { var testData = new TextLoader<TaxiTrip>(TestDataPath, useHeader: true, separator: ","); var evaluator = new RegressionEvaluator(); RegressionMetrics metrics = evaluator.Evaluate(model, testData); // Rms should be around 2.795276 Console.WriteLine("Rms=" + metrics.Rms); Console.WriteLine("RSquared = " + metrics.RSquared); }
预测新数据
定义一个被用于预测的新数据,对于各个特征进行恰当地赋值。
static class TestTrips { internal static readonly TaxiTrip Trip1 = new TaxiTrip { vendor_id = "VTS", rate_code = "1", passenger_count = 1, trip_distance = 10.33f, payment_type = "CSH", fare_amount = 0 // predict it. actual = 29.5 }; }
预测的方法很简单,prediction即预测的结果,从中打印出预测的费用和真实费用。
var prediction = model.Predict(TestTrips.Trip1); Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.fare_amount);
运行结果
到此我们完成了所有的步骤,关于这些代码的详细说明,可以参看《Tutorial: Use ML.NET to Predict New York Taxi Fares (Regression)》,只是要注意该文中的部分代码有误,由于使用到了C# 7.1的语法特性,本文的代码是经过了修正的。完整的代码如下:
using System; using Microsoft.ML.Models; using Microsoft.ML.Runtime; using Microsoft.ML.Runtime.Api; using Microsoft.ML.Trainers; using Microsoft.ML.Transforms; using System.Collections.Generic; using System.Linq; using Microsoft.ML; using System.Threading.Tasks; using System.IO; namespace TaxiFarePrediction { class Program { const string DataPath = @".\Data\taxi-fare-test.csv"; const string TestDataPath = @".\Data\taxi-fare-train.csv"; const string ModelPath = @".\Models\Model.zip"; const string ModelDirectory = @".\Models"; public class TaxiTrip { [Column(ordinal: "0")] public string vendor_id; [Column(ordinal: "1")] public string rate_code; [Column(ordinal: "2")] public float passenger_count; [Column(ordinal: "3")] public float trip_time_in_secs; [Column(ordinal: "4")] public float trip_distance; [Column(ordinal: "5")] public string payment_type; [Column(ordinal: "6")] public float fare_amount; } public class TaxiTripFarePrediction { [ColumnName("Score")] public float fare_amount; } static class TestTrips { internal static readonly TaxiTrip Trip1 = new TaxiTrip { vendor_id = "VTS", rate_code = "1", passenger_count = 1, trip_distance = 10.33f, payment_type = "CSH", fare_amount = 0 // predict it. actual = 29.5 }; } public static async Task<PredictionModel<TaxiTrip, TaxiTripFarePrediction>> Train() { var pipeline = new LearningPipeline(); pipeline.Add(new TextLoader<TaxiTrip>(DataPath, useHeader: true, separator: ",")); pipeline.Add(new ColumnCopier(("fare_amount", "Label"))); pipeline.Add(new CategoricalOneHotVectorizer("vendor_id", "rate_code", "payment_type")); pipeline.Add(new ColumnConcatenator("Features", "vendor_id", "rate_code", "passenger_count", "trip_distance", "payment_type")); pipeline.Add(new FastTreeRegressor()); PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = pipeline.Train<TaxiTrip, TaxiTripFarePrediction>(); if (!Directory.Exists(ModelDirectory)) { Directory.CreateDirectory(ModelDirectory); } await model.WriteAsync(ModelPath); return model; } public static void Evaluate(PredictionModel<TaxiTrip, TaxiTripFarePrediction> model) { var testData = new TextLoader<TaxiTrip>(TestDataPath, useHeader: true, separator: ","); var evaluator = new RegressionEvaluator(); RegressionMetrics metrics = evaluator.Evaluate(model, testData); // Rms should be around 2.795276 Console.WriteLine("Rms=" + metrics.Rms); Console.WriteLine("RSquared = " + metrics.RSquared); } static async Task Main(string[] args) { PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = await Train(); Evaluate(model); var prediction = model.Predict(TestTrips.Trip1); Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.fare_amount); } } }
不知不觉我们的ML.NET之旅又向前进了一步,是不是对于使用.NET Core进行机器学习解决现实生活中的问题更有兴趣了?请保持关注吧。