手记

Spark通过修改DataFrame的schema给表字段添加注释

我的原创地址:https://dongkelun.com/2018/08/20/sparkDfAddComments/

1、需求背景

通过Spark将关系型数据库(以Oracle为例)的表同步的Hive表,要求用Spark建表,有字段注释的也要加上注释。Spark建表,有两种方法:

  • 用Spark Sql,在程序里组建表语句,然后用Spark.sql("建表语句")建表,这种方法麻烦的地方在于你要读取Oracle表的详细的表结构信息,且要进行Oracle和Hive的字段类型进行一一对应

  • 用DataFrame 的saveAsTable方法,这种方法如果对应的数据库里没有表,则Spark会根据DataFrame的schema自动建表,比较简单,不用考虑字段类型匹配转化问题,但是这种方法有一个问题,Spark读取Oracle的表为DataFrame时,并不能将表字段的注释读进来,所以就有了如标题所示的需求。(一开始以为DataFrame不能加注释,经过研究,发现是可以的!)

2、如何查看DataFrame是否有注释

前面讲到DataFrame里没有Oracle的注释信息,但是如果数据源为Hive的话,是可以将注释获取到的。

2.1 新建Hive测试表(带注释)

create table `test` (`id` string comment 'ID', 
`Name` string comment '名字')comment '测试';


image

2.2 Spark读取hive表并打印注释(在spark-shell里执行)

若不清楚Spark如何连接hive,可以参考:spark连接hive(spark-shell和eclipse两种方式)
首先看一下df.printSchema里并没有注释信息

sql("use test")val df = spark.table("test")
df.printSchema
root
 |-- id: string (nullable = true)
 |-- name: string (nullable = true)

image

用下面这行代码便可以打印注释信息:

df.schema.foreach(s=>println(s.name,s.metadata))
(id,{"comment":"ID","HIVE_TYPE_STRING":"string"})
(name,{"comment":"名字","HIVE_TYPE_STRING":"string"})

image

3、读取Oracle表并打印DataFrmae的元数据信息

3.1 新建Oracle测试表(带注释)

CREATE TABLE ORA_TEST (ID VARCHAR2(100), 
NAME VARCHAR2(100)
);COMMENT ON COLUMN ORA_TEST.ID IS 'ID';COMMENT ON COLUMN ORA_TEST.NAME IS '名字';COMMENT ON TABLE ORA_TEST IS  '测试';
  • 注:上面的注释语句和建表语句需要分开执行,或者也可以在数据库工具执行脚本,比如我用的DBeaver用快捷键Alt+x即可。当然也可以在工具的界面直接建表均可。

image

3.2 读取Oracle表,并打印元数据

代码:

package com.dkl.leanring.spark.sql.Oracleimport org.apache.spark.sql.SparkSessionobject OracleSchemaDemo {  def main(args: Array[String]): Unit = {    val spark = SparkSession.builder().appName("OracleSchemaDemo").master("local").getOrCreate()    val df = spark.read
      .format("jdbc")
      .option("url", "jdbc:oracle:thin:@192.168.44.128:1521:orcl")
      .option("dbtable", "ORA_TEST")
      .option("user", "bigdata")
      .option("password", "bigdata")
      .option("driver", "oracle.jdbc.driver.OracleDriver")
      .load()
    df.schema.foreach(s => println(s.name, s.metadata))

    spark.stop

  }
}
(ID,{"name":"ID","scale":0})
(NAME,{"name":"NAME","scale":0})

image


注:Spark2.3.0和Spark2.2.1的元数据不太一样,上面的结果是Spark2.2.1(也是我写博客测试用的),项目中用的Spark2.3.0,2.3.0的元数据是空的,如下

(ID,{})
(NAME,{})

可见并没有注释信息

3.3 给DataFrame添加注释

import org.apache.spark.sql.types._val commentMap = Map("ID" -> "ID", "NAME" -> "名字")val schema = df.schema.map(s => {
  s.withComment(commentMap(s.name))
})//根据添加了注释的schema,新建DataFrameval new_df = spark.createDataFrame(df.rdd, StructType(schema)).repartition(160)

new_df.schema.foreach(s => println(s.name, s.metadata))
(ID,{"comment":"ID","name":"ID","scale":0})
(NAME,{"comment":"名字","name":"NAME","scale":0})

image

4、 测试写到Hive表有没有注释

需将前面代码中的spark改为支持hive,即加上enableHiveSupport()

spark.sql("use test")
new_df.write.mode("overwrite").saveAsTable("ORA_TEST")

然后在hive里看一下,是否有注释


image

可以看到,成功的把注释也保存到里hive里

5、附录

附上在Eclipse运行的完整代码

package com.dkl.leanring.spark.sql.Oracleimport org.apache.spark.sql.SparkSessionimport org.apache.spark.sql.types._object OracleSchemaDemo {  def main(args: Array[String]): Unit = {    val spark = SparkSession.builder().appName("OracleSchemaDemo").master("local").enableHiveSupport().getOrCreate()    val df = spark.read
      .format("jdbc")
      .option("url", "jdbc:oracle:thin:@192.168.44.128:1521:orcl")
      .option("dbtable", "ORA_TEST")
      .option("user", "bigdata")
      .option("password", "bigdata")
      .option("driver", "oracle.jdbc.driver.OracleDriver")
      .load()
    df.schema.foreach(s => println(s.name, s.metadata))    val commentMap = Map("ID" -> "ID", "NAME" -> "名字")    val schema = df.schema.map(s => {
      s.withComment(commentMap(s.name))
    })    //根据添加了注释的schema,新建DataFrame
    val new_df = spark.createDataFrame(df.rdd, StructType(schema)).repartition(160)

    new_df.schema.foreach(s => println(s.name, s.metadata))

    spark.sql("use test")    //保存到hive
    new_df.write.mode("overwrite").saveAsTable("ORA_TEST")

    spark.stop

  }
}



作者:董可伦
链接:https://www.jianshu.com/p/e4c90dc08935

0人推荐
随时随地看视频
慕课网APP