记一次redis读取超时的排查过程(SADD惹的祸)
问题背景
在业务使用redis过程中,出现了read timeout 的异常。
问题排查
直接原因
运维查询redis慢查询日志,发现在异常时间节点,有redis慢查询日志,执行sadd 命令花费了1秒钟。但由于redis是单线程应用,执行单条命令的阻塞,会造成其他命令的排队等候,导致read timeout。
深入排查-为什么sadd这么慢呢
为什么sadd这么慢呢?查阅redis文档看到,sadd操作的复杂度是O(1)的,实际使用本机docker搭建redis进行测试,使用脚本进行sadd,直到800W以上的量级才偶尔出现100毫秒以上的情况。(测试过程详见后面)
搭建redis环境
偷懒在本机就行测试,使用docker跑起了redis应用,过程如下:
docker pull redis # 使用redis3.x版本docker run -itv ~/redis.conf:/redis.conf -p 32768:6379 --name myredis5 -d redis redis-server /redis.conf
测试脚本
#coding=utf-8import timeimport redisimport random r = redis.Redis(host='x.x.x.x', port=xxxx, decode_responses=True) k = 'key4'tarr = [] st = time.clock() st2 = time.clock() r.sadd(k, 1) # 创建连接也会有耗时for i in range(1, 1600000): t1 = time.clock() * 1000 rn = random.randint(100000000000, 20000000000000) r.sadd(k, rn) t2 = time.clock() * 1000 c = t2 - t1 tarr.append(str(c)) if c > 100: print i, cprint time.clock() s = "\n".join(tarr)with open('./result.txt', 'w') as f: f.write(s)
测试结果
到达800W的时候开始偶尔出现sadd需要100ms的现象。
问题分析
查询了很多资料,无意中看到redis del操作复杂度为O(n),这里补充一下超时的更多背景,举例如下:
慢查询日志时间:16号00点00分01秒,命令为sadd prefix_20180215, 且key有过期时间。
看到这里答案已经呼之欲出,是不是sadd触发了redis是过期删除操作,同时由于del命令的复杂度为O(n),时间花在了删除过期数据上。
测试重现
for i in range(1, 1000000): t1 = time.clock() * 1000 rn = random.randint(100000000000, 20000000000000) r.sadd(k, rn) t2 = time.clock() * 1000 c = t2 - t1 tarr.append(str(c)) if c > 100: print i, c x = int(time.time()) x += 10 #延时10每秒过期r.expire(k, 10)while True: y = time.time() t1 = time.clock() * 1000 rn = random.randint(1, 1000000000) r.sadd(k, rn) t2 = time.clock() * 1000 tarr.append(str(c)) if c > 100:#复现sadd慢查询的情况 print i, c if y > x + 5: # 超时时间就break breakprint time.clock()
重现的步骤很简单,
给某个key sadd上足够的数据(百万级)
给key设置一个相对过期时间。
持续调用sadd命令,记录调用时间。
最后观察redis的慢查询日志。
如猜想一样,慢查询日志中出现了SADD命令,耗时1秒。
解决方案与总结
由于redis 对于集合键的del操作复杂度均为O(n),所以对于集合键,最好设置通过分片,避免单个key的值过大。
另外,redis4.0已经通过配置支持延时删除,可以通过lazyfree_lazy_expire/azyfree_lazy_eviction/lazyfree_lazy_server_del 来实现异步删除的操作,避免异步阻塞
延伸阅读
最后,让我们来看看redis3.x和4.x处理删除key的源码吧。
redis 有三种淘汰key的机制,分别为
del命令
被动淘汰(当请求命令对应的键过期时进行删除)
主动删除(redis主动对键进行淘汰,回收内存)
我们先看看redis3.x版本中上面三种淘汰机制的入口代码。
del命令 - delCommand
void delCommand(client *c) { int deleted = 0, j; for (j = 1; j < c->argc; j++) { expireIfNeeded(c->db,c->argv[j]); if (dbDelete(c->db,c->argv[j])) { signalModifiedKey(c->db,c->argv[j]); notifyKeyspaceEvent(NOTIFY_GENERIC, "del",c->argv[j],c->db->id); server.dirty++; deleted++; } } addReplyLongLong(c,deleted); }
处理流程相当的简单,先检查键是否过期,然后调用dbDelete进行删除
被动淘汰 - expireIfNeeded
int expireIfNeeded(redisDb *db, robj *key) { mstime_t when = getExpire(db,key); //获取过期时间 mstime_t now; if (when < 0) return 0; /* No expire for this key */ /* Don't expire anything while loading. It will be done later. */ if (server.loading) return 0; /* If we are in the context of a Lua script, we claim that time is * blocked to when the Lua script started. This way a key can expire * only the first time it is accessed and not in the middle of the * script execution, making propagation to slaves / AOF consistent. * See issue #1525 on Github for more information. */ now = server.lua_caller ? server.lua_time_start : mstime(); // 过去当前时间 /* If we are running in the context of a slave, return ASAP: * the slave key expiration is controlled by the master that will * send us synthesized DEL operations for expired keys. * * Still we try to return the right information to the caller, * that is, 0 if we think the key should be still valid, 1 if * we think the key is expired at this time. */ if (server.masterhost != NULL) return now > when; /* Return when this key has not expired */ if (now <= when) return 0; /* Delete the key */ server.stat_expiredkeys++; propagateExpire(db,key); // 把过期时间传递出去(从库、AOF备份等) notifyKeyspaceEvent(NOTIFY_EXPIRED, "expired",key,db->id); // 对db内的键发生的变动进行通知,适用于pubsub 通过pubsub来传递消息,可以用来作为redis的执行监控 return dbDelete(db,key); }
主动淘汰 - serverCron
server.c文件
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) { /** * sth not important */ ... /* We need to do a few operations on clients asynchronously. */ clientsCron(); /* Handle background operations on Redis databases. */ databasesCron(); /** * sth not important */ ... server.cronloops++; return 1000/server.hz; }/* This function handles 'background' operations we are required to do * incrementally in Redis databases, such as active key expiring, resizing, * rehashing. */void databasesCron(void) { /* Expire keys by random sampling. Not required for slaves * as master will synthesize DELs for us. */ if (server.active_expire_enabled && server.masterhost == NULL) activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW); /** * sth not important */ }/* Try to expire a few timed out keys. The algorithm used is adaptive and * will use few CPU cycles if there are few expiring keys, otherwise * it will get more aggressive to avoid that too much memory is used by * keys that can be removed from the keyspace. * * No more than CRON_DBS_PER_CALL databases are tested at every * iteration. * * This kind of call is used when Redis detects that timelimit_exit is * true, so there is more work to do, and we do it more incrementally from * the beforeSleep() function of the event loop. * * Expire cycle type: * * If type is ACTIVE_EXPIRE_CYCLE_FAST the function will try to run a * "fast" expire cycle that takes no longer than EXPIRE_FAST_CYCLE_DURATION * microseconds, and is not repeated again before the same amount of time. * * If type is ACTIVE_EXPIRE_CYCLE_SLOW, that normal expire cycle is * executed, where the time limit is a percentage of the REDIS_HZ period * as specified by the REDIS_EXPIRELOOKUPS_TIME_PERC define. */void activeExpireCycle(int type) { int dbs_per_call = CRON_DBS_PER_CALL; /* We usually should test CRON_DBS_PER_CALL per iteration, with * two exceptions: * * 1) Don't test more DBs than we have. * 2) If last time we hit the time limit, we want to scan all DBs * in this iteration, as there is work to do in some DB and we don't want * expired keys to use memory for too much time. */ if (dbs_per_call > server.dbnum || timelimit_exit) dbs_per_call = server.dbnum; //每次清理扫描的数据库数 /* We can use at max ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC percentage of CPU time * per iteration. Since this function gets called with a frequency of * server.hz times per second, the following is the max amount of * microseconds we can spend in this function. */ timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100; timelimit_exit = 0; if (timelimit <= 0) timelimit = 1; if (type == ACTIVE_EXPIRE_CYCLE_FAST) timelimit = ACTIVE_EXPIRE_CYCLE_FAST_DURATION; /* in microseconds. */ for (j = 0; j < dbs_per_call; j++) { int expired; redisDb *db = server.db+(current_db % server.dbnum); /* Increment the DB now so we are sure if we run out of time * in the current DB we'll restart from the next. This allows to * distribute the time evenly across DBs. */ current_db++; /* Continue to expire if at the end of the cycle more than 25% * of the keys were expired. */ // 如果有超过25%的键过期了则继续扫描 do { unsigned long num, slots; long long now, ttl_sum; int ttl_samples; /* If there is nothing to expire try next DB ASAP. */ if ((num = dictSize(db->expires)) == 0) { //当前没有需要过期的键 db->avg_ttl = 0; break; } slots = dictSlots(db->expires); now = mstime(); /* When there are less than 1% filled slots getting random * keys is expensive, so stop here waiting for better times... * The dictionary will be resized asap. */ if (num && slots > DICT_HT_INITIAL_SIZE && (num*100/slots < 1)) break; /* The main collection cycle. Sample random keys among keys * with an expire set, checking for expired ones. */ expired = 0; ttl_sum = 0; ttl_samples = 0; if (num > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP) num = ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP; // 3.2.11为20次 while (num--) { dictEntry *de; long long ttl; if ((de = dictGetRandomKey(db->expires)) == NULL) break; //随机获取一个键 ttl = dictGetSignedIntegerVal(de)-now; if (activeExpireCycleTryExpire(db,de,now)) expired++; if (ttl > 0) { /* We want the average TTL of keys yet not expired. */ ttl_sum += ttl; ttl_samples++; } } /** * 这里有一些控制删除时间的逻辑和其他逻辑。 */ if (timelimit_exit) return; /* We don't repeat the cycle if there are less than 25% of keys * found expired in the current DB. */ } while (expired > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP/4); // 20次 / 4 } }/* ======================= Cron: called every 100 ms ======================== *//* Helper function for the activeExpireCycle() function. * This function will try to expire the key that is stored in the hash table * entry 'de' of the 'expires' hash table of a Redis database. * * If the key is found to be expired, it is removed from the database and * 1 is returned. Otherwise no operation is performed and 0 is returned. * * When a key is expired, server.stat_expiredkeys is incremented. * * The parameter 'now' is the current time in milliseconds as is passed * to the function to avoid too many gettimeofday() syscalls. */int activeExpireCycleTryExpire(redisDb *db, dictEntry *de, long long now) { long long t = dictGetSignedIntegerVal(de); if (now > t) { sds key = dictGetKey(de); robj *keyobj = createStringObject(key,sdslen(key)); propagateExpire(db,keyobj); dbDelete(db,keyobj); notifyKeyspaceEvent(NOTIFY_EXPIRED, "expired",keyobj,db->id); decrRefCount(keyobj); server.stat_expiredkeys++; return 1; } else { return 0; } }
主动删除的调用路径为serverCron -> databasesCron -> activeExpireCycle -> activeExpireCycleTryExpire, 我们主要看看activeExpireCycleTryExpire。
主动淘汰是通过随机采样来进行删除的,随机的算法很简单,就是通过random来进行的,先random出slot,然后random出slot上的链表中的某个节点。另外会根据删除时间长短和过期键的数量来决定一次 主动淘汰的扫描db数量和次数。
顺带说说,serverCron是redis的 周期任务,通过定时器注册,databasesCron除了主动淘汰键,还会做rehash、resize等事情。
底层调用
三种机制虽然不同,但他们调用的底层都是相同的——dbDelete方法。
db.c 文件
/* Delete a key, value, and associated expiration entry if any, from the DB */int dbDelete(redisDb *db, robj *key) { /* Deleting an entry from the expires dict will not free the sds of * the key, because it is shared with the main dictionary. */ if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr); if (dictDelete(db->dict,key->ptr) == DICT_OK) { if (server.cluster_enabled) slotToKeyDel(key); return 1; } else { return 0; } }
dict.c文件
int dictDelete(dict *ht, const void *key) { return dictGenericDelete(ht,key,0); }/* Search and remove an element */static int dictGenericDelete(dict *d, const void *key, int nofree) { unsigned int h, idx; dictEntry *he, *prevHe; int table; if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */ if (dictIsRehashing(d)) _dictRehashStep(d); h = dictHashKey(d, key); for (table = 0; table <= 1; table++) { idx = h & d->ht[table].sizemask; he = d->ht[table].table[idx]; prevHe = NULL; while(he) { if (key==he->key || dictCompareKeys(d, key, he->key)) { /* Unlink the element from the list */ if (prevHe) prevHe->next = he->next; else d->ht[table].table[idx] = he->next; if (!nofree) { dictFreeKey(d, he); dictFreeVal(d, he); } zfree(he); d->ht[table].used--; return DICT_OK; } prevHe = he; he = he->next; } if (!dictIsRehashing(d)) break; } return DICT_ERR; /* not found */}/* ------------------------------- Macros ------------------------------------*/#define dictFreeVal(d, entry) \ if ((d)->type->valDestructor) \ (d)->type->valDestructor((d)->privdata, (entry)->v.val)
server.c
/* Db->dict, keys are sds strings, vals are Redis objects. */dictType dbDictType = { dictSdsHash, /* hash function */ NULL, /* key dup */ NULL, /* val dup */ dictSdsKeyCompare, /* key compare */ dictSdsDestructor, /* key destructor */ dictObjectDestructor /* val destructor */};void dictObjectDestructor(void *privdata, void *val){ DICT_NOTUSED(privdata); if (val == NULL) return; /* Values of swapped out keys as set to NULL */ decrRefCount(val); }
object.c
void decrRefCount(robj *o) { if (o->refcount <= 0) serverPanic("decrRefCount against refcount <= 0"); if (o->refcount == 1) { switch(o->type) { case OBJ_STRING: freeStringObject(o); break; case OBJ_LIST: freeListObject(o); break; case OBJ_SET: freeSetObject(o); break; case OBJ_ZSET: freeZsetObject(o); break; case OBJ_HASH: freeHashObject(o); break; default: serverPanic("Unknown object type"); break; } zfree(o); } else { o->refcount--; } } void freeSetObject(robj *o) { switch (o->encoding) { case OBJ_ENCODING_HT: dictRelease((dict*) o->ptr); break; case OBJ_ENCODING_INTSET: zfree(o->ptr); break; default: serverPanic("Unknown set encoding type"); } }
可以看到核心的删除是在dictFreeVal里,对应了一个宏,这个宏调用的是对应dictType的 valDestructor,也就是dbDictType里指定的dictObjectDestructor函数,对应的删除操作在decrRefCount(严格来说是通过引用计数来管理声明周期)
decrRefCount内对每种数据类型有对应的释放方法,我们来看set的释放方法freeSetObject方法。根据Set的两种数据类型有两种处理方式,intset只需要释放指针就好了,如果是哈希表则调用dictRelease方法。
dict.c
/* Clear & Release the hash table */void dictRelease(dict *d) { _dictClear(d,&d->ht[0],NULL); _dictClear(d,&d->ht[1],NULL); zfree(d); }/* Destroy an entire dictionary */int _dictClear(dict *d, dictht *ht, void(callback)(void *)) { unsigned long i; /* Free all the elements */ for (i = 0; i < ht->size && ht->used > 0; i++) { dictEntry *he, *nextHe; if (callback && (i & 65535) == 0) callback(d->privdata); if ((he = ht->table[i]) == NULL) continue; while(he) { nextHe = he->next; dictFreeKey(d, he); dictFreeVal(d, he); zfree(he); ht->used--; he = nextHe; } } /* Free the table and the allocated cache structure */ zfree(ht->table); /* Re-initialize the table */ _dictReset(ht); return DICT_OK; /* never fails */}
至此(dictClear方法)我们可以看到这是一个O(N)的过程,需要遍历ht每一个元素并进行删除,所以都存在阻塞redis的风险。(即使是主动淘汰的机制)
这一点在redis4.x系列已经通过延迟删除解决。
作者:her0kings1ey
链接:https://www.jianshu.com/p/7badc549f316