一、概述
前面写了两篇分析了tinker的loader部分源码以及dex diff/patch算法相关解析,那么为了保证完整性,最后一篇主要写tinker-patch-gradle-plugin相关了。
(距离看的时候已经快两个月了,再不写就忘了,赶紧记录下来)
注意:
本文基于1.7.7
前两篇文章分别为:
有兴趣的可以查看~
在介绍细节之前,我们可以先考虑下:通过一个命令生成一个patch文件,这个文件可以用于下发做热修复(可修复常规代码、资源等),那么第一反应是什么呢?
正常思维,需要设置oldApk,然后我这边build生成newApk,两者需要做diff,找出不同的代码、资源,通过特定的算法将diff出来的数据打成patch文件。
ok,的确是这样的,但是上述这个过程有什么需要注意的么?
我们在新增资源的时候,可能会因为我们新增的一个资源,导致非常多的资源id发生变化,如果这样直接进行diff,可能会导致资源错乱等(id指向了错误的图片)问题。所以应当保证,当资源改变或者新增、删除资源时,早已存在的资源的id不会发生变化。
我们在上线app的时候,会做代码混淆,如果没有做特殊的设置,每次混淆后的代码难以保证规则一致;所以,build过程中理论上需要设置混淆的mapping文件。
当项目比较大的时候,我们可能会遇到方法数超过65535的问题,我们很多时候会通过分包解决,这样就有主dex和其他dex的概念。集成了tinker之后,在应用的Application启动时会非常早的就去做tinker的load操作,所以就决定了load相关的类必须在主dex中。
在接入一些库的时候,往往还需要配置混淆,比如第三方库中哪些东西不能被混淆等(当然强制某些类在主dex中,也可能需要配置相对应的混淆规则)。
如果大家尝试过接入tinker并使用gradle的方式生成patch相关,会发现在需要在项目的build.gradle
中,添加一些配置,这些配置中,会要求我们配置oldApk路径,资源的R.txt路径,混淆mapping文件路径、还有一些比较tinker相关的比较细致的配置信息等。
不过并没有要求我们显示去处理上述几个问题(并没有让你去keep混淆规则,主dex分包规则,以及apply mapping文件),所以上述的几个实际上都是tinker的gradle plugin 帮我们做了。
所以,本文将会以这些问题为线索来带大家走一圈plugin的代码(当然实际上tinker gradle plugin所做的事情远不止上述)。
其次,tinker gradle plugin也是非常好的gradle的学习资料~
二、寻找查看代码入口
下载tinker的代码,导入后,plugin的代码都在tinker-patch-gradle-plugin
中,不过当然不能抱着代码一行一行去啃了,应该有个明确的入口,有条理的去阅读这些代码。
那么这个入口是什么呢?
其实很简单,我们在打patch的时候,需要执行tinkerPatchDebug
(注:本篇博客基于debug模式讲解)。
当执行完后,将会看到执行过程包含以下流程:
:app:processDebugManifest:app:tinkerProcessDebugManifest(tinker):app:tinkerProcessDebugResourceId (tinker):app:processDebugResources:app:tinkerProguardConfigTask(tinker):app:transformClassesAndResourcesWithProguard:app:tinkerProcessDebugMultidexKeep (tinker):app:transformClassesWidthMultidexlistForDebug:app:assembleDebug:app:tinkerPatchDebug(tinker)
注:包含(tinker)的都是tinker plugin 所添加的task
可以看到部分task加入到了build的流程中,那么这些task是如何加入到build过程中的呢?
在我们接入tinker之后,build.gradle中有如下代码:
if (buildWithTinker()) { apply plugin: 'com.tencent.tinker.patch' tinkerPatch {} // 各种参数}
如果开启了tinker,会apply一个plugincom.tencent.tinker.patch
:
名称实际上就是properties文件的名字,该文件会对应具体的插件类。
对于gradle plugin不了解的,可以参考http://www.cnblogs.com/davenkin/p/gradle-learning-10.html,后面写会抽空单独写一篇详细讲gradle的文章。
下面看TinkerPatchPlugin,在apply方法中,里面大致有类似的代码:
// ... 省略了一堆代码 TinkerPatchSchemaTask tinkerPatchBuildTask = project.tasks.create("tinkerPatch${variantName}", TinkerPatchSchemaTask) tinkerPatchBuildTask.dependsOn variant.assemble TinkerManifestTask manifestTask = project.tasks.create("tinkerProcess${variantName}Manifest", TinkerManifestTask) manifestTask.mustRunAfter variantOutput.processManifest variantOutput.processResources.dependsOn manifestTask TinkerResourceIdTask applyResourceTask = project.tasks.create("tinkerProcess${variantName}ResourceId", TinkerResourceIdTask) applyResourceTask.mustRunAfter manifestTask variantOutput.processResources.dependsOn applyResourceTaskif (proguardEnable) { TinkerProguardConfigTask proguardConfigTask = project.tasks.create("tinkerProcess${variantName}Proguard", TinkerProguardConfigTask) proguardConfigTask.mustRunAfter manifestTask def proguardTask = getProguardTask(project, variantName) if (proguardTask != null) { proguardTask.dependsOn proguardConfigTask } }if (multiDexEnabled) { TinkerMultidexConfigTask multidexConfigTask = project.tasks.create("tinkerProcess${variantName}MultidexKeep", TinkerMultidexConfigTask) multidexConfigTask.mustRunAfter manifestTask def multidexTask = getMultiDexTask(project, variantName) if (multidexTask != null) { multidexTask.dependsOn multidexConfigTask } }
可以看到它通过gradle Project API创建了5个task,通过dependsOn,mustRunAfter插入到了原本的流程中。
例如:
TinkerManifestTask manifestTask = ... manifestTask.mustRunAfter variantOutput.processManifest variantOutput.processResources.dependsOn manifestTask
TinkerManifestTask必须在processManifest之后执行,processResources在manifestTask后执行。
所以流程变为:
processManifest-> manifestTask-> processResources
其他同理。
ok,大致了解了这些task是如何注入的之后,接下来就看看每个task的具体作用吧。
注:如果我们有需求在build过程中搞事,可以参考上述task编写以及依赖方式的设置。
三、每个Task的具体行为
我们按照上述的流程来看,依次为:
TinkerManifestTaskTinkerResourceIdTask TinkerProguardConfigTask TinkerMultidexConfigTask TinkerPatchSchemaTask
丢个图,对应下:
四、TinkerManifestTask
#TinkerManifestTask@TaskAction def updateManifest() { // Parse the AndroidManifest.xml String tinkerValue = project.extensions.tinkerPatch.buildConfig.tinkerId tinkerValue = TINKER_ID_PREFIX + tinkerValue;//"tinker_id_" // /build/intermediates/manifests/full/debug/AndroidManifest.xml writeManifestMeta(manifestPath, TINKER_ID, tinkerValue) addApplicationToLoaderPattern() File manifestFile = new File(manifestPath) if (manifestFile.exists()) { FileOperation.copyFileUsingStream(manifestFile, project.file(MANIFEST_XML)) } }
这里主要做了两件事:
writeManifestMeta主要就是解析AndroidManifest.xml,在<application>
内部添加一个meta标签,value为tinkerValue。例如:
<meta-data android:name="TINKER_ID" android:value="tinker_id_com.zhy.abc" />
这里不详细展开了,话说groovy解析XML真方便。
addApplicationToLoaderPattern主要是记录自己的application类名和tinker相关的一些load class com.tencent.tinker.loader.*
,记录在project.extensions.tinkerPatch.dex.loader
中。
最后copy修改后的AndroidManifest.xml
至build/intermediates/tinker_intermediates/AndroidManifest.xml
。
这里我们需要想一下,在文初的分析中,并没有想到需要tinkerId这个东西,那么它到底是干嘛的呢?
看一下微信提供的参数说明,就明白了:
在运行过程中,我们需要验证基准apk包的tinkerId是否等于补丁包的tinkerId。这个是决定补丁包能运行在哪些基准包上面,一般来说我们可以使用Git版本号、versionName等等。
想一下,在非强制升级的情况下,线上一般分布着各个版本的app。但是。你打patch肯定是对应某个版本,所以你要保证这个patch下发下去只影响对应的版本,不会对其他版本造成影响,所以你需要tinkerId与具体的版本相对应。
ok,下一个TinkerResourceIdTask。
五、TinkerResourceIdTask
文初提到,打patch的过程实际上要控制已有的资源id不能发生变化,这个task所做的事就是为此。
如果保证已有资源的id保持不变呢?
实际上需要public.xml
和ids.xml
的参与,即预先在public.xml
中的如下定义,在第二次打包之后可保持该资源对应的id值不变。
注:对xml文件的名称应该没有强要求。
<public type="id" name="search_button" id="0x7f0c0046" />
很多时候我们在搜索固化资源,一般都能看到通过public.xml去固化资源id,但是这里有个ids.xml是干嘛的呢?
下面这篇文章有个很好的解释~
http://blog.csdn.net/sbsujjbcy/article/details/52541803
首先需要生成public.xml,public.xml的生成通过aapt编译时添加-P参数生成。相关代码通过gradle插件去hook Task无缝加入该参数,有一点需要注意,通过appt生成的public.xml并不是可以直接用的,该文件中存在id类型的资源,生成patch时应用进去编译的时候会报resource is not defined,解决方法是将id类型型的资源单独记录到ids.xml文件中,相当于一个声明过程,编译的时候和public.xml一样,将ids.xml也参与编译即可。
ok,知道了public.xml和ids.xml的作用之后,需要再思考一下如何保证id不变?
首先我们在配置old apk的时候,会配置tinkerApplyResourcePath参数,该参数对应一个R.txt,里面的内容涵盖了所有old apk中资源对应的int值。
那么我们可以这么做,根据这个R.txt,把里面的数据写成public.xml不就能保证原本的资源对应的int值不变了么。
的确是这样的,不过tinker做了更多,不仅将old apk的中的资源信息写到public.xml,而且还干涉了新的资源,对新的资源按照资源id的生成规则,也分配的对应的int值,写到了public.xml,可以说该task包办了资源id的生成。
分析前的总结
好了,由于代码非常长,我决定在这个地方先用总结性的语言总结下,如果没有耐心看代码的可以直接跳过源码分析阶段:
首先将设置的old R.txt读取到内存中,转为:
一个Map,key-value都代表一个具体资源信息;直接复用,不会生成新的资源信息。
一个Map,key为资源类型,value为该类资源当前的最大int值;参与新的资源id的生成。
接下来遍历当前app中的资源,资源分为:
values文件夹下文件
对所有values相关文件夹下的文件已经处理完毕,大致的处理为:遍历文件中的节点,大致有item,dimen,color,drawable,bool,integer,array,style,declare-styleable,attr,fraction这些节点,将所有的节点按类型分类存储到rTypeResourceMap(key为资源类型,value为对应类型资源集合Set)中。
其中declare-styleable这个标签,主要读取其内部的attr标签,对attr标签对应的资源按上述处理。
res下非values文件夹
打开自己的项目有看一眼,除了values相关还有layout,anim,color等文件夹,主要分为两类:
一类是对 文件 即为资源,例如R.layout.xxx,R.drawable.xxx
等;另一类为xml文档中以@+(去除@+Android:id),其实就是找到我们自定义id节点,然后截取该节点的id值部分作为属性的名称(例如:@+id/tv,tv即为属性的名称)。
如果和设置的old apk中文件中相同name和type的节点不需要特殊处理,直接复用即可;如果不存在则需要生成新的typeId、resourceId等信息。
会将所有生成的资源都存到rTypeResourceMap
中,最后写文件。
这样就基本收集到了所有的需要生成资源信息的所有的资源,最后写到public.xml
即可。
总结性的语言难免有一些疏漏,实际以源码分析为标准。
开始源码分析
@TaskAction def applyResourceId() { // 资源mapping文件 String resourceMappingFile = project.extensions.tinkerPatch.buildConfig.applyResourceMapping // resDir /build/intermediates/res/merged/debug String idsXml = resDir + "/values/ids.xml"; String publicXml = resDir + "/values/public.xml"; FileOperation.deleteFile(idsXml); FileOperation.deleteFile(publicXml); List<String> resourceDirectoryList = new ArrayList<String>(); // /build/intermediates/res/merged/debug resourceDirectoryList.add(resDir); project.logger.error("we build ${project.getName()} apk with apply resource mapping file ${resourceMappingFile}"); project.extensions.tinkerPatch.buildConfig.usingResourceMapping = true; // 收集所有的资源,以type->type,name,id,int/int[]存储 Map<RDotTxtEntry.RType, Set<RDotTxtEntry>> rTypeResourceMap = PatchUtil.readRTxt(resourceMappingFile); AaptResourceCollector aaptResourceCollector = AaptUtil.collectResource(resourceDirectoryList, rTypeResourceMap); PatchUtil.generatePublicResourceXml(aaptResourceCollector, idsXml, publicXml); File publicFile = new File(publicXml); if (publicFile.exists()) { FileOperation.copyFileUsingStream(publicFile, project.file(RESOURCE_PUBLIC_XML)); project.logger.error("tinker gen resource public.xml in ${RESOURCE_PUBLIC_XML}"); } File idxFile = new File(idsXml); if (idxFile.exists()) { FileOperation.copyFileUsingStream(idxFile, project.file(RESOURCE_IDX_XML)); project.logger.error("tinker gen resource idx.xml in ${RESOURCE_IDX_XML}"); } }
大体浏览下代码,可以看到首先检测是否设置了resource mapping文件,如果没有设置会直接跳过。并且最后的产物是public.xml
和ids.xml
。
因为生成patch时,需要保证两次打包已经存在的资源的id一致,需要
public.xml
和ids.xml
的参与。
首先清理已经存在的public.xml
和ids.xml
,然后通过PatchUtil.readRTxt
读取resourceMappingFile
(参数中设置的),该文件记录的格式如下:
int anim abc_slide_in_bottom 0x7f050006int id useLogo 0x7f0b0012int[] styleable AppCompatImageView { 0x01010119, 0x7f010027 }int styleable AppCompatImageView_android_src 0int styleable AppCompatImageView_srcCompat 1
大概有两类,一类是int型各种资源;一类是int[]数组,代表styleable,其后面紧跟着它的item(熟悉自定义View的一定不陌生)。
PatchUtil.readRTxt的代码就不贴了,简单描述下:
首先正则按行匹配,每行分为四部分,即idType
,rType
,name
,idValue
(四个属性为RDotTxtEntry的成员变量)。
idType有两种
INT
和INT_ARRAY
。rType包含各种资源:
ANIM, ANIMATOR, ARRAY, ATTR, BOOL, COLOR, DIMEN, DRAWABLE, FRACTION,
ID, INTEGER, INTERPOLATOR, LAYOUT, MENU, MIPMAP, PLURALS, RAW,
STRING, STYLE, STYLEABLE, TRANSITION, XML
name和value就是普通的键值对了。
这里并没有对styleable做特殊处理。
最后按rType分类,存在一个Map中,即key为rType,value为一个RDotTxtEntry类型的Set集合。
回顾下剩下的代码:
//...省略前半部分 AaptResourceCollector aaptResourceCollector = AaptUtil.collectResource(resourceDirectoryList, rTypeResourceMap); PatchUtil.generatePublicResourceXml(aaptResourceCollector, idsXml, publicXml); File publicFile = new File(publicXml); if (publicFile.exists()) { FileOperation.copyFileUsingStream(publicFile, project.file(RESOURCE_PUBLIC_XML)); project.logger.error("tinker gen resource public.xml in ${RESOURCE_PUBLIC_XML}"); } File idxFile = new File(idsXml); if (idxFile.exists()) { FileOperation.copyFileUsingStream(idxFile, project.file(RESOURCE_IDX_XML)); project.logger.error("tinker gen resource idx.xml in ${RESOURCE_IDX_XML}"); }
那么到了AaptUtil.collectResource方法,传入了resDir目录和我们刚才收集了资源信息的Map,返回了一个AaptResourceCollector对象,看名称是对aapt相关的资源的收集:
看代码:
public static AaptResourceCollector collectResource(List<String> resourceDirectoryList, Map<RType, Set<RDotTxtEntry>> rTypeResourceMap) { AaptResourceCollector resourceCollector = new AaptResourceCollector(rTypeResourceMap); List<com.tencent.tinker.build.aapt.RDotTxtEntry> references = new ArrayList<com.tencent.tinker.build.aapt.RDotTxtEntry>(); for (String resourceDirectory : resourceDirectoryList) { try { collectResources(resourceDirectory, resourceCollector); } catch (Exception e) { throw new RuntimeException(e); } } for (String resourceDirectory : resourceDirectoryList) { try { processXmlFilesForIds(resourceDirectory, references, resourceCollector); } catch (Exception e) { throw new RuntimeException(e); } } return resourceCollector; }
首先初始化了一个AaptResourceCollector对象,看其构造方法:
public AaptResourceCollector(Map<RType, Set<RDotTxtEntry>> rTypeResourceMap) { this(); if (rTypeResourceMap != null) { Iterator<Entry<RType, Set<RDotTxtEntry>>> iterator = rTypeResourceMap.entrySet().iterator(); while (iterator.hasNext()) { Entry<RType, Set<RDotTxtEntry>> entry = iterator.next(); RType rType = entry.getKey(); Set<RDotTxtEntry> set = entry.getValue(); for (RDotTxtEntry rDotTxtEntry : set) { originalResourceMap.put(rDotTxtEntry, rDotTxtEntry); ResourceIdEnumerator resourceIdEnumerator = null; // ARRAY主要是styleable if (!rDotTxtEntry.idType.equals(IdType.INT_ARRAY)) { // 获得resourceId int resourceId = Integer.decode(rDotTxtEntry.idValue.trim()).intValue(); // 获得typeId int typeId = ((resourceId & 0x00FF0000) / 0x00010000); if (typeId >= currentTypeId) { currentTypeId = typeId + 1; } // type -> id的映射 if (this.rTypeEnumeratorMap.containsKey(rType)) { resourceIdEnumerator = this.rTypeEnumeratorMap.get(rType); if (resourceIdEnumerator.currentId < resourceId) { resourceIdEnumerator.currentId = resourceId; } } else { resourceIdEnumerator = new ResourceIdEnumerator(); resourceIdEnumerator.currentId = resourceId; this.rTypeEnumeratorMap.put(rType, resourceIdEnumerator); } } } } } }
对rTypeResourceMap根据rType进行遍历,读取每个rType对应的Set集合;然后遍历每个rDotTxtEntry:
加入到originalResourceMap,key和value都是rDotTxtEntry对象
如果是int型资源,首先读取其typeId,并持续更新currentTypeId(保证其为遍历完成后的最大值+1)
初始化rTypeEnumeratorMap,key为rType,value为ResourceIdEnumerator,且ResourceIdEnumerator中的currentId保存着目前同类资源的最大的resouceId,也就是说rTypeEnumeratorMap中存储了各个rType对应的最大的资源Id。
结束完成构造方法,执行了
遍历了resourceDirectoryList,目前其中只有一个resDir,然后执行了collectResources方法;
遍历了resourceDirectoryList,执行了processXmlFilesForIds
分别读代码了:
collectResources
private static void collectResources(String resourceDirectory, AaptResourceCollector resourceCollector) throws Exception { File resourceDirectoryFile = new File(resourceDirectory); File[] fileArray = resourceDirectoryFile.listFiles(); if (fileArray != null) { for (File file : fileArray) { if (file.isDirectory()) { String directoryName = file.getName(); if (directoryName.startsWith("values")) { if (!isAValuesDirectory(directoryName)) { throw new AaptUtilException("'" + directoryName + "' is not a valid values directory."); } processValues(file.getAbsolutePath(), resourceCollector); } else { processFileNamesInDirectory(file.getAbsolutePath(), resourceCollector); } } } } }
遍历我们的resDir中的所有文件夹
如果是values相关文件夹,执行processValues
非values相关文件夹则执行processFileNamesInDirectory
processValues处理values相关文件,会遍历每一个合法的values相关文件夹下的文件,执行processValuesFile(file.getAbsolutePath(), resourceCollector);
public static void processValuesFile(String valuesFullFilename, AaptResourceCollector resourceCollector) throws Exception { Document document = JavaXmlUtil.parse(valuesFullFilename); String directoryName = new File(valuesFullFilename).getParentFile().getName(); Element root = document.getDocumentElement(); for (Node node = root.getFirstChild(); node != null; node = node.getNextSibling()) { if (node.getNodeType() != Node.ELEMENT_NODE) { continue; } String resourceType = node.getNodeName(); if (resourceType.equals(ITEM_TAG)) { resourceType = node.getAttributes().getNamedItem("type").getNodeValue(); if (resourceType.equals("id")) { resourceCollector.addIgnoreId(node.getAttributes().getNamedItem("name").getNodeValue()); } } if (IGNORED_TAGS.contains(resourceType)) { continue; } if (!RESOURCE_TYPES.containsKey(resourceType)) { throw new AaptUtilException("Invalid resource type '<" + resourceType + ">' in '" + valuesFullFilename + "'."); } RType rType = RESOURCE_TYPES.get(resourceType); String resourceValue = null; switch (rType) { case STRING: case COLOR: case DIMEN: case DRAWABLE: case BOOL: case INTEGER: resourceValue = node.getTextContent().trim(); break; case ARRAY://has sub item case PLURALS://has sub item case STYLE://has sub item case STYLEABLE://has sub item resourceValue = subNodeToString(node); break; case FRACTION://no sub item resourceValue = nodeToString(node, true); break; case ATTR://no sub item resourceValue = nodeToString(node, true); break; } try { addToResourceCollector(resourceCollector, new ResourceDirectory(directoryName, valuesFullFilename), node, rType, resourceValue); } catch (Exception e) { throw new AaptUtilException(e.getMessage() + ",Process file error:" + valuesFullFilename, e); } } }
values下相关的文件基本都是xml咯,所以遍历xml文件,遍历其内部的节点,(values的xml文件其内部一般为item,dimen,color,drawable,bool,integer,array,style,declare-styleable,attr,fraction等),每种类型的节点对应一个rType,根据不同类型的节点也会去获取节点的值,确定一个都会执行:
addToResourceCollector(resourceCollector, new ResourceDirectory(directoryName, valuesFullFilename), node, rType, resourceValue);
注:除此以外,这里在ignoreIdSet记录了声明的id资源,这些id是已经声明过的,所以最终在编写ids.xml时,可以过滤掉这些id。
下面继续看:addToResourceCollector
源码如下:
private static void addToResourceCollector(AaptResourceCollector resourceCollector, ResourceDirectory resourceDirectory, Node node, RType rType, String resourceValue) { String resourceName = sanitizeName(rType, resourceCollector, extractNameAttribute(node)); if (rType.equals(RType.STYLEABLE)) { int count = 0; for (Node attrNode = node.getFirstChild(); attrNode != null; attrNode = attrNode.getNextSibling()) { if (attrNode.getNodeType() != Node.ELEMENT_NODE || !attrNode.getNodeName().equals("attr")) { continue; } String rawAttrName = extractNameAttribute(attrNode); String attrName = sanitizeName(rType, resourceCollector, rawAttrName); if (!rawAttrName.startsWith("android:")) { resourceCollector.addIntResourceIfNotPresent(RType.ATTR, attrName); } } } else { resourceCollector.addIntResourceIfNotPresent(rType, resourceName); } }
如果不是styleable的资源,则直接获取resourceName,然后调用resourceCollector.addIntResourceIfNotPresent(rType, resourceName)。
如果是styleable类型的资源,则会遍历找到其内部的attr节点,找出非android:
开头的(因为android:开头的attr的id不需要我们去确定),设置rType为ATTR,value为attr属性的name,调用addIntResourceIfNotPresent。
public void addIntResourceIfNotPresent(RType rType, String name) { //, ResourceDirectory resourceDirectory) { if (!rTypeEnumeratorMap.containsKey(rType)) { if (rType.equals(RType.ATTR)) { rTypeEnumeratorMap.put(rType, new ResourceIdEnumerator(1)); } else { rTypeEnumeratorMap.put(rType, new ResourceIdEnumerator(currentTypeId++)); } } RDotTxtEntry entry = new FakeRDotTxtEntry(IdType.INT, rType, name); Set<RDotTxtEntry> resourceSet = null; if (this.rTypeResourceMap.containsKey(rType)) { resourceSet = this.rTypeResourceMap.get(rType); } else { resourceSet = new HashSet<RDotTxtEntry>(); this.rTypeResourceMap.put(rType, resourceSet); } if (!resourceSet.contains(entry)) { String idValue = String.format("0x%08x", rTypeEnumeratorMap.get(rType).next()); addResource(rType, IdType.INT, name, idValue); //, resourceDirectory); } }
首先构建一个entry,然后判断当前的rTypeResourceMap中是否存在该资源实体,如果存在,则什么都不用做。
如果不存在,则需要构建一个entry,那么主要是id的构建。
关于id的构建:
还记得rTypeEnumeratorMap么,其内部包含了我们设置的”res mapping”文件,存储了每一类资源(rType)的资源的最大resourceId值。
那么首先判断就是是否已经有这种类型了,如果有的话,获取出该类型当前最大的resourceId,然后+1,最为传入资源的resourceId.
如果不存在当前这种类型,那么如果类型为ATTR则固定type为1;否则的话,新增一个typeId,为当前最大的type+1(currentTypeId中也是记录了目前最大的type值),有了类型就可以通过ResourceIdEnumerator.next()来获取id。
经过上述就可以构造出一个idValue了。
最后调用:
addResource(rType, IdType.INT, name, idValue);
查看代码:
public void addResource(RType rType, IdType idType, String name, String idValue) { Set<RDotTxtEntry> resourceSet = null; if (this.rTypeResourceMap.containsKey(rType)) { resourceSet = this.rTypeResourceMap.get(rType); } else { resourceSet = new HashSet<RDotTxtEntry>(); this.rTypeResourceMap.put(rType, resourceSet); } RDotTxtEntry rDotTxtEntry = new RDotTxtEntry(idType, rType, name, idValue); if (!resourceSet.contains(rDotTxtEntry)) { if (this.originalResourceMap.containsKey(rDotTxtEntry)) { this.rTypeEnumeratorMap.get(rType).previous(); rDotTxtEntry = this.originalResourceMap.get(rDotTxtEntry); } resourceSet.add(rDotTxtEntry); } }
大体意思就是如果该资源不存在就添加到rTypeResourceMap。
首先构建出该资源实体,判断该类型对应的资源集合是否包含该资源实体(这里contains只比对name和type),如果不包含,判断是否在originalResourceMap中,如果存在(这里做了一个previous操作,其实与上面的代码的next操作对应,主要是针对资源存在我们的res map中这种情况)则取出该资源实体,最终将该资源实体加入到rTypeResourceMap中。
ok,到这里需要小节一下,我们刚才对所有values相关文件夹下的文件已经处理完毕,大致的处理为:遍历文件中的节点,大致有item,dimen,color,drawable,bool,integer,array,style,declare-styleable,attr,fraction这些节点,将所有的节点按类型分类存储到rTypeResourceMap中(如果和设置的”res map”文件中相同name和type的节点不需要特殊处理,直接复用即可;如果不存在则需要生成新的typeId、resourceId等信息)。
其中declare-styleable
这个标签,主要读取其内部的attr标签,对attr标签对应的资源按上述处理。
处理完成values相关文件夹之后,还需要处理一些res下的其他文件,比如layout、layout、anim等文件夹,该类资源也需要在R中生成对应的id值,这类值也需要固化。
processFileNamesInDirectory
public static void processFileNamesInDirectory(String resourceDirectory, AaptResourceCollector resourceCollector) throws IOException { File resourceDirectoryFile = new File(resourceDirectory); String directoryName = resourceDirectoryFile.getName(); int dashIndex = directoryName.indexOf('-'); if (dashIndex != -1) { directoryName = directoryName.substring(0, dashIndex); } if (!RESOURCE_TYPES.containsKey(directoryName)) { throw new AaptUtilException(resourceDirectoryFile.getAbsolutePath() + " is not a valid resource sub-directory."); } File[] fileArray = resourceDirectoryFile.listFiles(); if (fileArray != null) { for (File file : fileArray) { if (file.isHidden()) { continue; } String filename = file.getName(); int dotIndex = filename.indexOf('.'); String resourceName = dotIndex != -1 ? filename.substring(0, dotIndex) : filename; RType rType = RESOURCE_TYPES.get(directoryName); resourceCollector.addIntResourceIfNotPresent(rType, resourceName); System.out.println("rType = " + rType + " , resName = " + resourceName); ResourceDirectory resourceDirectoryBean = new ResourceDirectory(file.getParentFile().getName(), file.getAbsolutePath()); resourceCollector.addRTypeResourceName(rType, resourceName, null, resourceDirectoryBean); } } }
遍历res下所有文件夹,根据文件夹名称确定其对应的资源类型(例如:drawable-xhpi,则认为其内部的文件类型为drawable类型),然后遍历该文件夹下所有的文件,最终以文件名为资源的name,文件夹确定资源的type,最终调用:
resourceCollector.addIntResourceIfNotPresent(rType, resourceName);
processXmlFilesForIds
public static void processXmlFilesForIds(String resourceDirectory, List<RDotTxtEntry> references, AaptResourceCollector resourceCollector) throws Exception { List<String> xmlFullFilenameList = FileUtil .findMatchFile(resourceDirectory, Constant.Symbol.DOT + Constant.File.XML); if (xmlFullFilenameList != null) { for (String xmlFullFilename : xmlFullFilenameList) { File xmlFile = new File(xmlFullFilename); String parentFullFilename = xmlFile.getParent(); File parentFile = new File(parentFullFilename); if (isAValuesDirectory(parentFile.getName()) || parentFile.getName().startsWith("raw")) { // Ignore files under values* directories and raw*. continue; } processXmlFile(xmlFullFilename, references, resourceCollector); } } }
遍历除了raw*
以及values*
相关文件夹下的xml文件,执行processXmlFile。
public static void processXmlFile(String xmlFullFilename, List<RDotTxtEntry> references, AaptResourceCollector resourceCollector) throws IOException, XPathExpressionException { Document document = JavaXmlUtil.parse(xmlFullFilename); NodeList nodesWithIds = (NodeList) ANDROID_ID_DEFINITION.evaluate(document, XPathConstants.NODESET); for (int i = 0; i < nodesWithIds.getLength(); i++) { String resourceName = nodesWithIds.item(i).getNodeValue(); if (!resourceName.startsWith(ID_DEFINITION_PREFIX)) { throw new AaptUtilException("Invalid definition of a resource: '" + resourceName + "'"); } resourceCollector.addIntResourceIfNotPresent(RType.ID, resourceName.substring(ID_DEFINITION_PREFIX.length())); } // 省略了无关代码}
主要找xml文档中以@+
(去除@+android:id
),其实就是找到我们自定义id节点,然后截取该节点的id值部分作为属性的名称(例如:@+id/tv
,tv即为属性的名称),最终调用:
resourceCollector .addIntResourceIfNotPresent(RType.ID, resourceName.substring(ID_DEFINITION_PREFIX.length()));
上述就完成了所有的资源的收集,那么剩下的就是写文件了:
public static void generatePublicResourceXml(AaptResourceCollector aaptResourceCollector, String outputIdsXmlFullFilename, String outputPublicXmlFullFilename) { if (aaptResourceCollector == null) { return; } FileUtil.createFile(outputIdsXmlFullFilename); FileUtil.createFile(outputPublicXmlFullFilename); PrintWriter idsWriter = null; PrintWriter publicWriter = null; try { FileUtil.createFile(outputIdsXmlFullFilename); FileUtil.createFile(outputPublicXmlFullFilename); idsWriter = new PrintWriter(new File(outputIdsXmlFullFilename), "UTF-8"); publicWriter = new PrintWriter(new File(outputPublicXmlFullFilename), "UTF-8"); idsWriter.println("<?xml version=\"1.0\" encoding=\"utf-8\"?>"); publicWriter.println("<?xml version=\"1.0\" encoding=\"utf-8\"?>"); idsWriter.println("<resources>"); publicWriter.println("<resources>"); Map<RType, Set<RDotTxtEntry>> map = aaptResourceCollector.getRTypeResourceMap(); Iterator<Entry<RType, Set<RDotTxtEntry>>> iterator = map.entrySet().iterator(); while (iterator.hasNext()) { Entry<RType, Set<RDotTxtEntry>> entry = iterator.next(); RType rType = entry.getKey(); if (!rType.equals(RType.STYLEABLE)) { Set<RDotTxtEntry> set = entry.getValue(); for (RDotTxtEntry rDotTxtEntry : set) { String rawName = aaptResourceCollector.getRawName(rType, rDotTxtEntry.name); if (StringUtil.isBlank(rawName)) { rawName = rDotTxtEntry.name; } publicWriter.println("<public type=\"" + rType + "\" name=\"" + rawName + "\" id=\"" + rDotTxtEntry.idValue.trim() + "\" />"); } Set<String> ignoreIdSet = aaptResourceCollector.getIgnoreIdSet(); for (RDotTxtEntry rDotTxtEntry : set) { if (rType.equals(RType.ID) && !ignoreIdSet.contains(rDotTxtEntry.name)) { idsWriter.println("<item type=\"" + rType + "\" name=\"" + rDotTxtEntry.name + "\"/>"); } } } idsWriter.flush(); publicWriter.flush(); } idsWriter.println("</resources>"); publicWriter.println("</resources>"); } catch (Exception e) { throw new PatchUtilException(e); } finally { if (idsWriter != null) { idsWriter.flush(); idsWriter.close(); } if (publicWriter != null) { publicWriter.flush(); publicWriter.close(); } } }
主要就是遍历rTypeResourceMap,然后每个资源实体对应一条public
标签记录写到public.xml
中。
此外,如果发现该元素节点的type为Id,并且不在ignoreSet中,会写到ids.xml这个文件中。(这里有个ignoreSet,这里ignoreSet中记录了values下所有的<item type=id
的资源,是直接在项目中已经声明过的,所以去除)。
六、TinkerProguardConfigTask
还记得文初说:
我们在上线app的时候,会做代码混淆,如果没有做特殊的设置,每次混淆后的代码差别应该非常巨大;所以,build过程中理论上需要设置混淆的mapping文件。
在接入一些库的时候,往往还需要配置混淆,比如第三方库中哪些东西不能被混淆等(当然强制某些类在主dex中,也可能需要配置相对应的混淆规则)。
这个task的作用很明显了。有时候为了确保一些类在main dex中,简单的做法也会对其在混淆配置中进行keep(避免由于混淆造成类名更改,而使main dex的keep失效)。
如果开启了proguard会执行该task。
这个就是主要去设置混淆的mapping文件,和keep一些必要的类了。
@TaskAction def updateTinkerProguardConfig() { def file = project.file(PROGUARD_CONFIG_PATH) project.logger.error("try update tinker proguard file with ${file}") // Create the directory if it doesnt exist already file.getParentFile().mkdirs() // Write our recommended proguard settings to this file FileWriter fr = new FileWriter(file.path) String applyMappingFile = project.extensions.tinkerPatch.buildConfig.applyMapping //write applymapping if (shouldApplyMapping && FileOperation.isLegalFile(applyMappingFile)) { project.logger.error("try add applymapping ${applyMappingFile} to build the package") fr.write("-applymapping " + applyMappingFile) fr.write("\n") } else { project.logger.error("applymapping file ${applyMappingFile} is illegal, just ignore") } fr.write(PROGUARD_CONFIG_SETTINGS) fr.write("#your dex.loader patterns here\n") //they will removed when apply Iterable<String> loader = project.extensions.tinkerPatch.dex.loader for (String pattern : loader) { if (pattern.endsWith("*") && !pattern.endsWith("**")) { pattern += "*" } fr.write("-keep class " + pattern) fr.write("\n") } fr.close() // Add this proguard settings file to the list applicationVariant.getBuildType().buildType.proguardFiles(file) def files = applicationVariant.getBuildType().buildType.getProguardFiles() project.logger.error("now proguard files is ${files}") }
读取我们设置的mappingFile,设置
-applymapping applyMappingFile
然后设置一些默认需要keep的规则:
PROGUARD_CONFIG_SETTINGS ="-keepattributes *Annotation* \n" +"-dontwarn com.tencent.tinker.anno.AnnotationProcessor \n" +"-keep @com.tencent.tinker.anno.DefaultLifeCycle public class *\n" +"-keep public class * extends android.app.Application {\n" +" *;\n" +"}\n" +"\n" +"-keep public class com.tencent.tinker.loader.app.ApplicationLifeCycle {\n" +" *;\n" +"}\n" +"-keep public class * implements com.tencent.tinker.loader.app.ApplicationLifeCycle {\n" +" *;\n" +"}\n" +"\n" +"-keep public class com.tencent.tinker.loader.TinkerLoader {\n" +" *;\n" +"}\n" +"-keep public class * extends com.tencent.tinker.loader.TinkerLoader {\n" +" *;\n" +"}\n" +"-keep public class com.tencent.tinker.loader.TinkerTestDexLoad {\n" +" *;\n" +"}\n" +"\n"
最后是keep住我们的application、com.tencent.tinker.loader.**
以及我们设置的相关类。
TinkerManifestTask中:addApplicationToLoaderPattern主要是记录自己的application类名和tinker相关的一些load class
com.tencent.tinker.loader.*
,记录在project.extensions.tinkerPatch.dex.loader
。
七、TinkerMultidexConfigTask
对应文初:
当项目比较大的时候,我们可能会遇到方法数超过65535的问题,我们很多时候会通过分包解决,这样就有主dex和其他dex的概念。集成了tinker之后,在应用的Application启动时会非常早的就去做tinker的load操作,所以就决定了load相关的类必须在主dex中。
如果multiDexEnabled开启。
主要是让相关类必须在main dex。
"-keep public class * implements com.tencent.tinker.loader.app.ApplicationLifeCycle {\n" + " *;\n" + "}\n" + "\n" + "-keep public class * extends com.tencent.tinker.loader.TinkerLoader {\n" + " *;\n" + "}\n" + "\n" + "-keep public class * extends android.app.Application {\n" + " *;\n" + "}\n"
Iterable<String> loader = project.extensions.tinkerPatch.dex.loader for (String pattern : loader) { if (pattern.endsWith("*")) { if (!pattern.endsWith("**")) { pattern += "*" } } lines.append("-keep class " + pattern + " {\n" + " *;\n" + "}\n") .append("\n") }
相关类都在loader这个集合中,在TinkerManifestTask中设置的。
八、TinkerPatchSchemaTask
主要执行Runner.tinkerPatch
protected void tinkerPatch() { try { //gen patch ApkDecoder decoder = new ApkDecoder(config); decoder.onAllPatchesStart(); decoder.patch(config.mOldApkFile, config.mNewApkFile); decoder.onAllPatchesEnd(); //gen meta file and version file PatchInfo info = new PatchInfo(config); info.gen(); //build patch PatchBuilder builder = new PatchBuilder(config); builder.buildPatch(); } catch (Throwable e) { e.printStackTrace(); goToError(); } }
主要分为以下环节:
生成patch
生成meta-file和version-file,这里主要就是在assets目录下写一些键值对。(包含tinkerId以及配置中configField相关信息)
build patch
(1)生成pacth
顾名思义就是两个apk比较去生成各类patch文件,那么从一个apk的组成来看,大致可以分为:
dex文件比对的patch文件
res文件比对的patch res文件
so文件比对生成的so patch文件
看下代码:
public boolean patch(File oldFile, File newFile) throws Exception { //check manifest change first manifestDecoder.patch(oldFile, newFile); unzipApkFiles(oldFile, newFile); Files.walkFileTree(mNewApkDir.toPath(), new ApkFilesVisitor(config, mNewApkDir.toPath(), mOldApkDir.toPath(), dexPatchDecoder, soPatchDecoder, resPatchDecoder)); soPatchDecoder.onAllPatchesEnd(); dexPatchDecoder.onAllPatchesEnd(); manifestDecoder.onAllPatchesEnd(); resPatchDecoder.onAllPatchesEnd(); //clean resources dexPatchDecoder.clean(); soPatchDecoder.clean(); resPatchDecoder.clean(); return true; }
代码内部包含四个Decoder:
manifestDecoder
dexPatchDecoder
soPatchDecoder
resPatchDecoder
刚才提到需要对dex、so、res文件做diff,但是为啥会有个manifestDecoder。目前tinker并不支持四大组件,也就是说manifest文件中是不允许出现新增组件的。
所以,manifestDecoder的作用实际上是用于检查的:
minSdkVersion<14时仅允许dexMode使用jar模式(TODO:raw模式的区别是什么?)
会解析manifest文件,读取出组大组件进行对比,不允许出现新增的任何组件。
代码就不贴了非常好理解,关于manifest的解析是基于该库封装的:
然后就是解压两个apk文件了,old apk(我们设置的),old apk 生成的。
解压的目录为:
old apk: build/intermediates/outputs/old apk名称/
new apk: build/intermediates/outputs/app-debug/
解压完成后,就是单个文件对比了:
对比的思路是,以newApk解压目录下所有的文件为基准,去oldApk中找同名的文件,那么会有以下几个情况:
在oldApkDir中没有找到,那么说明该文件是新增的
在oldApkDir中找到了,那么比对md5,如果不同,则认为改变了(则需要根据情况做diff)
有了大致的了解后,可以看代码:
Files.walkFileTree( mNewApkDir.toPath(), new ApkFilesVisitor( config, mNewApkDir.toPath(), mOldApkDir.toPath(), dexPatchDecoder, soPatchDecoder, resPatchDecoder));
Files.walkFileTree会以mNewApkDir.toPath()
为基准,遍历其内部所有的文件,ApkFilesVisitor
中可以对每个遍历的文件进行操作。
重点看ApkFilesVisitor
是如何操作每个文件的:
@Overridepublic FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException { Path relativePath = newApkPath.relativize(file); // 在oldApkDir中找到该文件 Path oldPath = oldApkPath.resolve(relativePath); File oldFile = null; //is a new file?! if (oldPath.toFile().exists()) { oldFile = oldPath.toFile(); } String patternKey = relativePath.toString().replace("\\", "/"); if (Utils.checkFileInPattern(config.mDexFilePattern, patternKey)) { dexDecoder.patch(oldFile, file.toFile()); } if (Utils.checkFileInPattern(config.mSoFilePattern, patternKey)) { soDecoder.patch(oldFile, file.toFile()); } if (Utils.checkFileInPattern(config.mResFilePattern, patternKey)) { resDecoder.patch(oldFile, file.toFile()); } return FileVisitResult.CONTINUE; }
首先去除newApkDir中的一个文件,在oldApkDir中寻找同名的apk;然后根据名称判断该文件属于:
dexFile -> dexDecoder.patch 完成dex文件间的比对
soFile -> soDecoder.patch 完成so文件的比对
resFile -> resDecoder.patch 完成res文件的比对
各种文件的规则是可配置的。
(1)dexDecoder.patch
public boolean patch(final File oldFile, final File newFile) { final String dexName = getRelativeDexName(oldFile, newFile); // 检查loader class,省略了抛异常的一些代码 excludedClassModifiedChecker.checkIfExcludedClassWasModifiedInNewDex(oldFile, newFile); File dexDiffOut = getOutputPath(newFile).toFile(); final String newMd5 = getRawOrWrappedDexMD5(newFile); //new add file if (oldFile == null || !oldFile.exists() || oldFile.length() == 0) { hasDexChanged = true; copyNewDexAndLogToDexMeta(newFile, newMd5, dexDiffOut); return true; } final String oldMd5 = getRawOrWrappedDexMD5(oldFile); if ((oldMd5 != null && !oldMd5.equals(newMd5)) || (oldMd5 == null && newMd5 != null)) { hasDexChanged = true; if (oldMd5 != null) { collectAddedOrDeletedClasses(oldFile, newFile); } } RelatedInfo relatedInfo = new RelatedInfo(); relatedInfo.oldMd5 = oldMd5; relatedInfo.newMd5 = newMd5; // collect current old dex file and corresponding new dex file for further processing. oldAndNewDexFilePairList.add(new AbstractMap.SimpleEntry<>(oldFile, newFile)); dexNameToRelatedInfoMap.put(dexName, relatedInfo); return true; }
首先执行:
checkIfExcludedClassWasModifiedInNewDex(oldFile, newFile);
该方法主要用处是检查 tinker loader相关classes**必须存在primary dex中**,且不允许新增、修改和删除。
所有首先将两个dex读取到内存中,按照config.mDexLoaderPattern
进行过滤,找出deletedClassInfos
、addedClassInfos
、changedClassInfosMap
,必须保证deletedClassInfos.isEmpty() && addedClassInfos.isEmpty() && changedClassInfosMap.isEmpty()
即不允许新增、删除、修改loader 相关类。
继续,拿到输出目录:
build/intermediates/outputs/tinker_result/
然后如果oldFile不存在,则newFile认为是新增文件,直接copy到输出目录,并记录log
copyNewDexAndLogToDexMeta(newFile, newMd5, dexDiffOut);
如果存在,则计算两个文件的md5,如果md5不同,则认为dexChanged(hasDexChanged = true)
,执行:
collectAddedOrDeletedClasses(oldFile, newFile);
该方法收集了addClasses和deleteClasses的相关信息,记录在:
addedClassDescToDexNameMap key为addClassDesc 和 该dex file的path
deletedClassDescToDexNameMap key为deletedClassDesc 和 该dex file的path
后续会使用这两个数据结构,mark一下。
继续往下走,初始化了一个relatedInfo
记录了两个文件的md5,以及在oldAndNewDexFilePairList
中记录了两个dex file,在dexNameToRelatedInfoMap
中记录了dexName和relatedInfo
的映射。
后续会使用该变量,mark一下。
到此,dexDecoder的patch方法就结束了,仅将新增的文件copy到了目标目录。
那么发生改变的文件,理论上应该要做md5看来在后面才会执行。
如果文件是so文件,则会走soDecoder.patch。
(2)soDecoder.patch
soDecoder实际上是BsDiffDecoder
@Overridepublic boolean patch(File oldFile, File newFile) { //new add file String newMd5 = MD5.getMD5(newFile); File bsDiffFile = getOutputPath(newFile).toFile(); if (oldFile == null || !oldFile.exists()) { FileOperation.copyFileUsingStream(newFile, bsDiffFile); writeLogFiles(newFile, null, null, newMd5); return true; } //new add file String oldMd5 = MD5.getMD5(oldFile); if (oldMd5.equals(newMd5)) { return false; } if (!bsDiffFile.getParentFile().exists()) { bsDiffFile.getParentFile().mkdirs(); } BSDiff.bsdiff(oldFile, newFile, bsDiffFile); //超过80%,返回false if (Utils.checkBsDiffFileSize(bsDiffFile, newFile)) { writeLogFiles(newFile, oldFile, bsDiffFile, newMd5); } else { FileOperation.copyFileUsingStream(newFile, bsDiffFile); writeLogFiles(newFile, null, null, newMd5); } return true; }
如果oldFile不存在,则认为newFile为新增文件,直接copy到目标文件(连着so相关目录)。
若oldFile存在,则比对二者md5,如果md5不一致,则直接进行bsdiff算法,直接在目标位置写入bsdiff产生的bsDiffFile。
本来到此应该已经结束了,但是接下来做了一件挺有意思的事:
继续判断了生成的patch文件是否已经超过newFile的80%,如果超过80%,则直接copy newFile到目标目录,直接覆盖了刚生成的patch文件。
那么soPatch整个过程:
如果是新增文件,直接copy至目标文件夹,记录log
如果是改变的文件,patch文件超过新文件的80%,则直接copy新文件至目标文件夹,记录log
如果是改变的文件,patch文件不超过新文件的80%,则copy patch文件至目标文件夹,记录log
如果newFile是res 资源,则会走resDecoder
(3)resDecoder.patch
@Overridepublic boolean patch(File oldFile, File newFile) throws IOException, TinkerPatchException { String name = getRelativePathStringToNewFile(newFile); File outputFile = getOutputPath(newFile).toFile(); if (oldFile == null || !oldFile.exists()) { FileOperation.copyFileUsingStream(newFile, outputFile); addedSet.add(name); writeResLog(newFile, oldFile, TypedValue.ADD); return true; } //new add file String newMd5 = MD5.getMD5(newFile); String oldMd5 = MD5.getMD5(oldFile); //oldFile or newFile may be 0b length if (oldMd5 != null && oldMd5.equals(newMd5)) { return false; } if (Utils.checkFileInPattern(config.mResIgnoreChangePattern, name)) { Logger.d("found modify resource: " + name + ", but it match ignore change pattern, just ignore!"); return false; } if (name.equals(TypedValue.RES_MANIFEST)) { Logger.d("found modify resource: " + name + ", but it is AndroidManifest.xml, just ignore!"); return false; } if (name.equals(TypedValue.RES_ARSC)) { if (AndroidParser.resourceTableLogicalChange(config)) { Logger.d("found modify resource: " + name + ", but it is logically the same as original new resources.arsc, just ignore!"); return false; } } dealWithModeFile(name, newMd5, oldFile, newFile, outputFile); return true; }
如果oldFile不存在,则认为新增文件,直接copy且加入到addedSet集合,并记录log
如果存在,且md5不同调研dealWithModeFile(设置的sIgnoreChangePattern、MANIFEST和逻辑上相同的ARSC不做处理)。
private boolean dealWithModeFile(String name, String newMd5, File oldFile, File newFile, File outputFile) { if (checkLargeModFile(newFile)) { if (!outputFile.getParentFile().exists()) { outputFile.getParentFile().mkdirs(); } BSDiff.bsdiff(oldFile, newFile, outputFile); //未超过80%返回true if (Utils.checkBsDiffFileSize(outputFile, newFile)) { LargeModeInfo largeModeInfo = new LargeModeInfo(); largeModeInfo.path = newFile; largeModeInfo.crc = FileOperation.getFileCrc32(newFile); largeModeInfo.md5 = newMd5; largeModifiedSet.add(name); largeModifiedMap.put(name, largeModeInfo); writeResLog(newFile, oldFile, TypedValue.LARGE_MOD); return true; } } modifiedSet.add(name); FileOperation.copyFileUsingStream(newFile, outputFile); writeResLog(newFile, oldFile, TypedValue.MOD); return false; }
这里,首先check了largeFile,即改变的文件是否大于100K(该值可以配置)。
如果非大文件,则直接copy至目标文件,且记录到modifiedSet,并记录了log。
如果是大文件,则直接bsdiff,生成patch File;接下来也检查了一下patch file是否超过newFile的80%,如果超过,则直接copy newFile覆盖刚生成的patch File;
总体和so patch基本一致。
到这里,除了dex patch中对改变的dex文件没有做处理以外,so 和 res都做了。
接下来执行了:
public boolean patch(File oldFile, File newFile) throws Exception { //... soPatchDecoder.onAllPatchesEnd(); dexPatchDecoder.onAllPatchesEnd(); manifestDecoder.onAllPatchesEnd(); resPatchDecoder.onAllPatchesEnd(); //clean resources dexPatchDecoder.clean(); soPatchDecoder.clean(); resPatchDecoder.clean(); return true; }
其中dexPatchDecoder和resPatchDecoder有后续实现。
(4) dexPatchDecoder.onAllPatchesEnd
# DexDiffDecoder@Overridepublic void onAllPatchesEnd() throws Exception { if (!hasDexChanged) { Logger.d("No dexes were changed, nothing needs to be done next."); return; } generatePatchInfoFile(); addTestDex(); }
如果dex文件没有改变,直接返回。
private void generatePatchInfoFile() throws IOException { generatePatchedDexInfoFile(); logDexesToDexMeta(); checkCrossDexMovingClasses(); }
主要看generatePatchedDexInfoFile
private void generatePatchedDexInfoFile() { // Generate dex diff out and full patched dex if a pair of dex is different. for (AbstractMap.SimpleEntry<File, File> oldAndNewDexFilePair : oldAndNewDexFilePairList) { File oldFile = oldAndNewDexFilePair.getKey(); File newFile = oldAndNewDexFilePair.getValue(); final String dexName = getRelativeDexName(oldFile, newFile); RelatedInfo relatedInfo = dexNameToRelatedInfoMap.get(dexName); if (!relatedInfo.oldMd5.equals(relatedInfo.newMd5)) { diffDexPairAndFillRelatedInfo(oldFile, newFile, relatedInfo); } else { // In this case newDexFile is the same as oldDexFile, but we still // need to treat it as patched dex file so that the SmallPatchGenerator // can analyze which class of this dex should be kept in small patch. relatedInfo.newOrFullPatchedFile = newFile; relatedInfo.newOrFullPatchedMd5 = relatedInfo.newMd5; } } }
oldAndNewDexFilePairList中记录了两个dex文件,然后根据dex file获取到dexName,再由dexNameToRelatedInfoMap根据name获得到RelatedInfo。
RelatedInfo中包含了两个dex file的md5,如果不同,则执行diffDexPairAndFillRelatedInfo
。
private void diffDexPairAndFillRelatedInfo(File oldDexFile, File newDexFile, RelatedInfo relatedInfo) { //outputs/tempPatchedDexes File tempFullPatchDexPath = new File(config.mOutFolder + File.separator + TypedValue.DEX_TEMP_PATCH_DIR); final String dexName = getRelativeDexName(oldDexFile, newDexFile); File dexDiffOut = getOutputPath(newDexFile).toFile(); ensureDirectoryExist(dexDiffOut.getParentFile()); // dex diff , 去除loader classes DexPatchGenerator dexPatchGen = new DexPatchGenerator(oldDexFile, newDexFile); dexPatchGen.setAdditionalRemovingClassPatterns(config.mDexLoaderPattern); dexPatchGen.executeAndSaveTo(dexDiffOut); relatedInfo.dexDiffFile = dexDiffOut; relatedInfo.dexDiffMd5 = MD5.getMD5(dexDiffOut); File tempFullPatchedDexFile = new File(tempFullPatchDexPath, dexName); try { new DexPatchApplier(oldDexFile, dexDiffOut).executeAndSaveTo(tempFullPatchedDexFile); Logger.d( String.format("Verifying if patched new dex is logically the same as original new dex: %s ...", getRelativeStringBy(newDexFile, config.mTempUnzipNewDir)) ); Dex origNewDex = new Dex(newDexFile); Dex patchedNewDex = new Dex(tempFullPatchedDexFile); checkDexChange(origNewDex, patchedNewDex); relatedInfo.newOrFullPatchedFile = tempFullPatchedDexFile; relatedInfo.newOrFullPatchedMd5 = MD5.getMD5(tempFullPatchedDexFile); } catch (Exception e) { e.printStackTrace(); throw new TinkerPatchException( "Failed to generate temporary patched dex, which makes MD5 generating procedure of new dex failed, either.", e ); } if (!tempFullPatchedDexFile.exists()) { throw new TinkerPatchException("can not find the temporary full patched dex file:" + tempFullPatchedDexFile.getAbsolutePath()); } Logger.d("\nGen %s for dalvik full dex file:%s, size:%d, md5:%s", dexName, tempFullPatchedDexFile.getAbsolutePath(), tempFullPatchedDexFile.length(), relatedInfo.newOrFullPatchedMd5); }
开始针对两个dex文件做dex diff,最终将生成的patch 文件放置在目标文件夹中。
接下来,生成一个临时文件夹,通过DexPatchApplier
针对生成的patch文件和old dex file,直接做了合并操作,相当于在本地模拟执行了在客户端上的patch操作。
然后再对新合并生成的patchedNewDex与之前的origNewDex,进行了checkDexChange,即这两者类级别对比,应该所有的类都相同。
最后在dexDecoder的onAllPatchesEnd中还执行了一个addTestDex
private void addTestDex() throws IOException { //write test dex String dexMode = "jar"; if (config.mDexRaw) { dexMode = "raw"; } final InputStream is = DexDiffDecoder.class.getResourceAsStream("/" + TEST_DEX_NAME); String md5 = MD5.getMD5(is, 1024); is.close(); String meta = TEST_DEX_NAME + "," + "" + "," + md5 + "," + md5 + "," + 0 + "," + 0 + "," + dexMode; File dest = new File(config.mTempResultDir + "/" + TEST_DEX_NAME); FileOperation.copyResourceUsingStream(TEST_DEX_NAME, dest); Logger.d("\nAdd test install result dex: %s, size:%d", dest.getAbsolutePath(), dest.length()); Logger.d("DexDecoder:write test dex meta file data: %s", meta); metaWriter.writeLineToInfoFile(meta); }
copy了一个test.dex文件至目标文件夹,该文件存储在tinker-patch-lib的resources文件夹下,主要用于在app上进行测试。
完成了所有的diff工作后,后面就是生成patch文件了。
(2)打包所有生成的patch文件
//build patchPatchBuilder builder = new PatchBuilder(config); builder.buildPatch();
详细代码:
public PatchBuilder(Configuration config) { this.config = config; this.unSignedApk = new File(config.mOutFolder, PATCH_NAME + "_unsigned.apk"); this.signedApk = new File(config.mOutFolder, PATCH_NAME + "_signed.apk"); this.signedWith7ZipApk = new File(config.mOutFolder, PATCH_NAME + "_signed_7zip.apk"); this.sevenZipOutPutDir = new File(config.mOutFolder, TypedValue.OUT_7ZIP_FILE_PATH); }public void buildPatch() throws Exception { final File resultDir = config.mTempResultDir; //no file change if (resultDir.listFiles().length == 0) { return; } generateUnsignedApk(unSignedApk); signApk(unSignedApk, signedApk); use7zApk(signedApk, signedWith7ZipApk, sevenZipOutPutDir); if (!signedApk.exists()) { Logger.e("Result: final unsigned patch result: %s, size=%d", unSignedApk.getAbsolutePath(), unSignedApk.length()); } else { long length = signedApk.length(); Logger.e("Result: final signed patch result: %s, size=%d", signedApk.getAbsolutePath(), length); if (signedWith7ZipApk.exists()) { long length7zip = signedWith7ZipApk.length(); Logger.e("Result: final signed with 7zip patch result: %s, size=%d", signedWith7ZipApk.getAbsolutePath(), length7zip); if (length7zip > length) { Logger.e("Warning: %s is bigger than %s %d byte, you should choose %s at these time!", signedWith7ZipApk.getName(), signedApk.getName(), (length7zip - length), signedApk.getName()); } } } }
主要会生成3个文件:unSignedApk
,signedApk
以及signedWith7ZipApk
。
unSignedApk只要将tinker_result
中的文件压缩到一个压缩包即可。
signedApk将unSignedApk使用jarsigner进行签名。
signedWith7ZipApk主要是对signedApk进行解压再做sevenZip压缩。
好了,到此茫茫长的文章就结束啦~~~
受限于本人知识,文中难免出现错误,可以直接留言指出。
九、总结
一直关注tinker的更新,也在项目中对tinker进行了使用与定制,tinker中包含了大量的可学习的知识,项目本身在也具有非常强的价值。
对于tinker的“技术的初心与坚持”一文感触颇深,希望tinker越来越好~
可以阅读以下文章,继续了解tinker~~