TF-slim是一个新的TensorFlow轻量级高级API,可以用来搭建、训练和验证网络模型,最近由于项目需要,在学习使用该库。dataset库中包含下载标准数据集的代码,下面介绍如何在标准代码的基础上准备自己的数据进行训练。
1. 准备自己的数据
将要训练和测试的数据分别放在train和test文件夹下,文件夹下是以标签名命名的各子类数据,如下图所示
2.在datasets下创建自己待训练数据的脚本,比如我这里命名为car,则相应的准备car.py 和 download_and_convert_car.py两个脚本。
car.py的脚本和datasets文件夹下的flowers.py等标准数据集脚本一样,只需要更改对应的类别数和样本数。
_FILE_PATTERN = 'car_%s_*.tfrecord'SPLITS_TO_SIZES = {'train': 12973, 'validation': 3200} _NUM_CLASSES = 3
download_and_convert_car.py和对应的脚本有区别,不需要下载和划分数据,只需要做数据转换即可,下面贴出代码。
#!/usr/bin/env python2# -*- coding: utf-8 -*-""" Created on Wed May 30 09:53:21 2018 @author: liuli """from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport mathimport osimport randomimport sysimport tensorflow as tffrom datasets import dataset_utils# Seed for repeatability._RANDOM_SEED = 0# The number of shards per dataset split._NUM_SHARDS = 5class ImageReader(object): """Helper class that provides TensorFlow image coding utilities.""" def __init__(self): # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) def read_image_dims(self, sess, image_data): image = self.decode_jpeg(sess, image_data) return image.shape[0], image.shape[1] def decode_jpeg(self, sess, image_data): image = sess.run(self._decode_jpeg, feed_dict={self._decode_jpeg_data: image_data}) assert len(image.shape) == 3 assert image.shape[2] == 3 return imagedef _get_filenames_and_classes(dataset_dir): directories = [] class_names = [] for filename in os.listdir(dataset_dir): path = os.path.join(dataset_dir, filename) if os.path.isdir(path): directories.append(path) class_names.append(filename) photo_filenames = [] for directory in directories: for filename in os.listdir(directory): path = os.path.join(directory, filename) photo_filenames.append(path) return photo_filenames, sorted(class_names)def _get_dataset_filename(dataset_dir, split_name, shard_id): output_filename = 'car_%s_%05d-of-%05d.tfrecord' % ( split_name, shard_id, _NUM_SHARDS) return os.path.join(dataset_dir, output_filename)def _convert_dataset(split_name, filenames, class_names_to_ids, dataset_dir): """Converts the given filenames to a TFRecord dataset. Args: split_name: The name of the dataset, either 'train' or 'validation'. filenames: A list of absolute paths to png or jpg images. class_names_to_ids: A dictionary from class names (strings) to ids (integers). dataset_dir: The directory where the converted datasets are stored. """ assert split_name in ['train', 'validation'] num_per_shard = int(math.ceil(len(filenames) / float(_NUM_SHARDS))) with tf.Graph().as_default(): image_reader = ImageReader() with tf.Session('') as sess: for shard_id in range(_NUM_SHARDS): output_filename = _get_dataset_filename( dataset_dir, split_name, shard_id) with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: start_ndx = shard_id * num_per_shard end_ndx = min((shard_id+1) * num_per_shard, len(filenames)) for i in range(start_ndx, end_ndx): sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( i+1, len(filenames), shard_id)) sys.stdout.flush() # Read the filename: image_data = tf.gfile.FastGFile(filenames[i], 'rb').read() height, width = image_reader.read_image_dims(sess, image_data) class_name = os.path.basename(os.path.dirname(filenames[i])) class_id = class_names_to_ids[class_name] example = dataset_utils.image_to_tfexample( image_data, b'jpg', height, width, class_id) tfrecord_writer.write(example.SerializeToString()) sys.stdout.write('\n') sys.stdout.flush() train_data_dir = '/home/liuli/work/Tensorflow/flower_data/raw-data/train'test_data_dir = '/home/liuli/work/Tensorflow/flower_data/raw-data/validation'def run(dataset_dir): """Runs the download and conversion operation. Args: dataset_dir: The dataset directory where the dataset is stored. """ training_filenames,class_names = _get_filenames_and_classes(train_data_dir) class_names_to_ids = dict(zip(class_names, range(len(class_names)))) random.seed(_RANDOM_SEED) random.shuffle(training_filenames) validation_filenames,_= _get_filenames_and_classes(test_data_dir) random.shuffle(validation_filenames) _convert_dataset('train', training_filenames, class_names_to_ids, dataset_dir) _convert_dataset('validation', validation_filenames, class_names_to_ids, dataset_dir) labels_to_class_names = dict(zip(range(len(class_names)), class_names)) dataset_utils.write_label_file(labels_to_class_names, dataset_dir) print('\nFinished converting the car dataset!')
3.在download_and_convert_data.py 69行main函数中加入dataset_name选择代码
elif FLAGS.dataset_name == 'car': download_and_convert_car.run(FLAGS.dataset_dir)
4.在dataset_factory.py的datasets_map中相应插入自己训练数据的键值对
from datasets import carimport osimport tensorflow as tf slim = tf.contrib.slim datasets_map = { 'cifar10': cifar10, 'flowers': flowers, 'imagenet': imagenet, 'mnist': mnist, 'car':car }
5.创建生成数据的脚本
DATASET_DIR=/home/liuli/work/Tensorflow/cars python download_and_convert_data.py \ --dataset_name=car \ --dataset_dir=${DATASET_DIR}
就可以在DATASET_DIR文件夹下生成对应的TFrecord格式的数据