继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

最新Python笔试题2017 涵盖知识面广泛

largeQ
关注TA
已关注
手记 978
粉丝 92
获赞 585

引言

想找一份Python开发工作吗?那你很可能得证明自己知道如何使用Python。下面这些问题涉及了与Python相关的许多技能,问题的关注点主要是语言本身,不是某个特定的包或模块。每一个问题都可以扩充为一个教程,如果可能的话。某些问题甚至会涉及多个领域。


我之前还没有出过和这些题目一样难的面试题,如果你能轻松地回答出来的话,赶紧去找份工作吧!

问题1

到底什么是Python?你可以在回答中与其他技术进行对比(也鼓励这样做)。


答案

下面是一些关键点:

Python是一种解释型语言。这就是说,与C语言和C的衍生语言不同,Python代码在运行之前不需要编译。其他解释型语言还包括PHP和Ruby。

Python是动态类型语言,指的是你在声明变量时,不需要说明变量的类型。你可以直接编写类似x=111和x="I'm a string"这样的代码,程序不会报错。

Python非常适合面向对象的编程(OOP),因为它支持通过组合(composition)与继承(inheritance)的方式定义类(class)。Python中没有访问说明符(access specifier,类似C++中的public和private),这么设计的依据是“大家都是成年人了”。

在Python语言中,函数是第一类对象(first-class objects)。这指的是它们可以被指定给变量,函数既能返回函数类型,也可以接受函数作为输入。类(class)也是第一类对象。

Python代码编写快,但是运行速度比编译语言通常要慢。好在Python允许加入基于C语言编写的扩展,因此我们能够优化代码,消除瓶颈,这点通常是可以实现的。numpy就是一个很好地例子,它的运行速度真的非常快,因为很多算术运算其实并不是通过Python实现的。

Python用途非常广泛——网络应用,自动化,科学建模,大数据应用,等等。它也常被用作“胶水语言”,帮助其他语言和组件改善运行状况。

Python让困难的事情变得容易,因此程序员可以专注于算法和数据结构的设计,而不用处理底层的细节。


问题2

补充缺失的代码

def print_directory_contents(sPath):
    """
    这个函数接受文件夹的名称作为输入参数,
    返回该文件夹中文件的路径,
    以及其包含文件夹中文件的路径。
    """
    # 补充代码


答案

def print_directory_contents(sPath):
    import os                                       
    for sChild in os.listdir(sPath):                
        sChildPath = os.path.join(sPath,sChild)
        if os.path.isdir(sChildPath):
            print_directory_contents(sChildPath)
        else:
            print sChildPath

特别要注意以下几点:


命名规范要统一。如果样本代码中能够看出命名规范,遵循其已有的规范。

递归函数需要递归并终止。确保你明白其中的原理,否则你将面临无休无止的调用栈(callstack)。

我们使用os模块与操作系统进行交互,同时做到交互方式是可以跨平台的。你可以把代码写成sChildPath = sPath + '/' + sChild,但是这个在Windows系统上会出错。

熟悉基础模块是非常有价值的,但是别想破脑袋都背下来,记住Google是你工作中的良师益友。

如果你不明白代码的预期功能,就大胆提问。

坚持KISS原则!保持简单,不过脑子就能懂!

为什么提这个问题:


说明面试者对与操作系统交互的基础知识

递归真是太好用啦


问题3

阅读下面的代码,写出A0,A1至An的最终值。

A0 = dict(zip(('a','b','c','d','e'),(1,2,3,4,5)))
A1 = range(10)
A2 = [i for i in A1 if i in A0]
A3 = [A0[s] for s in A0]
A4 = [i for i in A1 if i in A3]
A5 = {i:i*i for i in A1}
A6 = [[i,i*i] for i in A1]

答案

A0 = {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4}
A1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
A2 = []
A3 = [1, 3, 2, 5, 4]
A4 = [1, 2, 3, 4, 5]
A5 = {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
A6 = [[0, 0], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36], [7, 49], [8, 64], [9, 81]]

为什么提这个问题:


列表解析(list comprehension)十分节约时间,对很多人来说也是一个大的学习障碍。

如果你读懂了这些代码,就很可能可以写下正确地值。

其中部分代码故意写的怪怪的。因为你共事的人之中也会有怪人。

问题4

Python和多线程(multi-threading)。这是个好主意码?列举一些让Python代码以并行方式运行的方法。


答案


Python并不支持真正意义上的多线程。Python中提供了多线程包,但是如果你想通过多线程提高代码的速度,使用多线程包并不是个好主意。Python中有一个被称为Global Interpreter Lock(GIL)的东西,它会确保任何时候你的多个线程中,只有一个被执行。线程的执行速度非常之快,会让你误以为线程是并行执行的,但是实际上都是轮流执行。经过GIL这一道关卡处理,会增加执行的开销。这意味着,如果你想提高代码的运行速度,使用threading包并不是一个很好的方法。


不过还是有很多理由促使我们使用threading包的。如果你想同时执行一些任务,而且不考虑效率问题,那么使用这个包是完全没问题的,而且也很方便。但是大部分情况下,并不是这么一回事,你会希望把多线程的部分外包给操作系统完成(通过开启多个进程),或者是某些调用你的Python代码的外部程序(例如Spark或Hadoop),又或者是你的Python代码调用的其他代码(例如,你可以在Python中调用C函数,用于处理开销较大的多线程工作)。


为什么提这个问题


因为GIL就是个混账东西(A-hole)。很多人花费大量的时间,试图寻找自己多线程代码中的瓶颈,直到他们明白GIL的存在。


问题5

你如何管理不同版本的代码?


答案


版本管理!被问到这个问题的时候,你应该要表现得很兴奋,甚至告诉他们你是如何使用Git(或是其他你最喜欢的工具)追踪自己和奶奶的书信往来。我偏向于使用Git作为版本控制系统(VCS),但还有其他的选择,比如subversion(SVN)。


为什么提这个问题:


因为没有版本控制的代码,就像没有杯子的咖啡。有时候我们需要写一些一次性的、可以随手扔掉的脚本,这种情况下不作版本控制没关系。但是如果你面对的是大量的代码,使用版本控制系统是有利的。版本控制能够帮你追踪谁对代码库做了什么操作;发现新引入了什么bug;管理你的软件的不同版本和发行版;在团队成员中分享源代码;部署及其他自动化处理。它能让你回滚到出现问题之前的版本,单凭这点就特别棒了。还有其他的好功能。怎么一个棒字了得!


问题6

下面代码会输出什么:

def f(x,l=[]):
    for i in range(x):
        l.append(i*i)
    print l
f(2)
f(3,[3,2,1])
f(3)

答案:

[0, 1]
[3, 2, 1, 0, 1, 4]
[0, 1, 0, 1, 4]

呃?


第一个函数调用十分明显,for循环先后将0和1添加至了空列表l中。l是变量的名字,指向内存中存储的一个列表。第二个函数调用在一块新的内存中创建了新的列表。l这时指向了新生成的列表。之后再往新列表中添加0、1、2和4。很棒吧。第三个函数调用的结果就有些奇怪了。它使用了之前内存地址中存储的旧列表。这就是为什么它的前两个元素是0和1了。


不明白的话就试着运行下面的代码吧:

l_mem = []
l = l_mem           # the first call
for i in range(2):
    l.append(i*i)
print l             # [0, 1]
l = [3,2,1]         # the second call
for i in range(3):
    l.append(i*i)
print l             # [3, 2, 1, 0, 1, 4]
l = l_mem           # the third call
for i in range(3):
    l.append(i*i)
print l             # [0, 1, 0, 1, 4]


问题7

“猴子补丁”(monkey patching)指的是什么?这种做法好吗?


答案


“猴子补丁”就是指,在函数或对象已经定义之后,再去改变它们的行为。


举个例子:

import datetime
datetime.datetime.now = lambda: datetime.datetime(2012, 12, 12)

大部分情况下,这是种很不好的做法 - 因为函数在代码库中的行为最好是都保持一致。打“猴子补丁”的原因可能是为了测试。mock包对实现这个目的很有帮助。


为什么提这个问题?


答对这个问题说明你对单元测试的方法有一定了解。你如果提到要避免“猴子补丁”,可以说明你不是那种喜欢花里胡哨代码的程序员(公司里就有这种人,跟他们共事真是糟糕透了),而是更注重可维护性。还记得KISS原则码?答对这个问题还说明你明白一些Python底层运作的方式,函数实际是如何存储、调用等等。


另外:如果你没读过mock模块的话,真的值得花时间读一读。这个模块非常有用。


问题8

这两个参数是什么意思:*args,**kwargs?我们为什么要使用它们?


答案


如果我们不确定要往函数中传入多少个参数,或者我们想往函数中以列表和元组的形式传参数时,那就使要用*args;如果我们不知道要往函数中传入多少个关键词参数,或者想传入字典的值作为关键词参数时,那就要使用**kwargs。args和kwargs这两个标识符是约定俗成的用法,你当然还可以用*bob和**billy,但是这样就并不太妥。


下面是具体的示例:

def f(*args,**kwargs): print args, kwargs
l = [1,2,3]
t = (4,5,6)
d = {'a':7,'b':8,'c':9}
f()
f(1,2,3)                    # (1, 2, 3) {}
f(1,2,3,"pythontab")           # (1, 2, 3, 'pythontab') {}
f(a=1,b=2,c=3)              # () {'a': 1, 'c': 3, 'b': 2}
f(a=1,b=2,c=3,zzz="hi")     # () {'a': 1, 'c': 3, 'b': 2, 'zzz': 'hi'}
f(1,2,3,a=1,b=2,c=3)        # (1, 2, 3) {'a': 1, 'c': 3, 'b': 2}
f(*l,**d)                   # (1, 2, 3) {'a': 7, 'c': 9, 'b': 8}
f(*t,**d)                   # (4, 5, 6) {'a': 7, 'c': 9, 'b': 8}
f(1,2,*t)                   # (1, 2, 4, 5, 6) {}
f(q="winning",**d)          # () {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}
f(1,2,*t,q="winning",**d)   # (1, 2, 4, 5, 6) {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}
def f2(arg1,arg2,*args,**kwargs): print arg1,arg2, args, kwargs
f2(1,2,3)                       # 1 2 (3,) {}
f2(1,2,3,"pythontab")              # 1 2 (3, 'pythontab') {}
f2(arg1=1,arg2=2,c=3)           # 1 2 () {'c': 3}
f2(arg1=1,arg2=2,c=3,zzz="hi")  # 1 2 () {'c': 3, 'zzz': 'hi'}
f2(1,2,3,a=1,b=2,c=3)           # 1 2 (3,) {'a': 1, 'c': 3, 'b': 2}
f2(*l,**d)                   # 1 2 (3,) {'a': 7, 'c': 9, 'b': 8}
f2(*t,**d)                   # 4 5 (6,) {'a': 7, 'c': 9, 'b': 8}
f2(1,2,*t)                   # 1 2 (4, 5, 6) {}
f2(1,1,q="winning",**d)      # 1 1 () {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}
f2(1,2,*t,q="winning",**d)   # 1 2 (4, 5, 6) {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}

为什么提这个问题?


有时候,我们需要往函数中传入未知个数的参数或关键词参数。有时候,我们也希望把参数或关键词参数储存起来,以备以后使用。有时候,仅仅是为了节省时间。


问题9

下面这些是什么意思:@classmethod, @staticmethod, @property?


回答背景知识


这些都是装饰器(decorator)。装饰器是一种特殊的函数,要么接受函数作为输入参数,并返回一个函数,要么接受一个类作为输入参数,并返回一个类。@标记是语法糖(syntactic sugar),可以让你以简单易读得方式装饰目标对象。

@my_decorator
def my_func(stuff):
    do_things
Is equivalent to
def my_func(stuff):
    do_things
my_func = my_decorator(my_func)

你可以在本网站上找到介绍装饰器工作原理的教材。


真正的答案


@classmethod, @staticmethod和@property这三个装饰器的使用对象是在类中定义的函数。下面的例子展示了它们的用法和行为:

class MyClass(object):
    def __init__(self):
        self._some_property = "properties are nice"
        self._some_other_property = "VERY nice"
    def normal_method(*args,**kwargs):
        print "calling normal_method({0},{1})".format(args,kwargs)
    @classmethod
    def class_method(*args,**kwargs):
        print "calling class_method({0},{1})".format(args,kwargs)
    @staticmethod
    def static_method(*args,**kwargs):
        print "calling static_method({0},{1})".format(args,kwargs)
    @property
    def some_property(self,*args,**kwargs):
        print "calling some_property getter({0},{1},{2})".format(self,args,kwargs)
        return self._some_property
    @some_property.setter
    def some_property(self,*args,**kwargs):
        print "calling some_property setter({0},{1},{2})".format(self,args,kwargs)
        self._some_property = args[0]
    @property
    def some_other_property(self,*args,**kwargs):
        print "calling some_other_property getter({0},{1},{2})".format(self,args,kwargs)
        return self._some_other_property
o = MyClass()
# 未装饰的方法还是正常的行为方式,需要当前的类实例(self)作为第一个参数。
o.normal_method 
# <bound method MyClass.normal_method of <__main__.MyClass instance at 0x7fdd2537ea28>>
o.normal_method() 
# normal_method((<__main__.MyClass instance at 0x7fdd2537ea28>,),{})
o.normal_method(1,2,x=3,y=4) 
# normal_method((<__main__.MyClass instance at 0x7fdd2537ea28>, 1, 2),{'y': 4, 'x': 3})
# 类方法的第一个参数永远是该类
o.class_method
# <bound method classobj.class_method of <class __main__.MyClass at 0x7fdd2536a390>>
o.class_method()
# class_method((<class __main__.MyClass at 0x7fdd2536a390>,),{})
o.class_method(1,2,x=3,y=4)
# class_method((<class __main__.MyClass at 0x7fdd2536a390>, 1, 2),{'y': 4, 'x': 3})
# 静态方法(static method)中除了你调用时传入的参数以外,没有其他的参数。
o.static_method
# <function static_method at 0x7fdd25375848>
o.static_method()
# static_method((),{})
o.static_method(1,2,x=3,y=4)
# static_method((1, 2),{'y': 4, 'x': 3})
# @property是实现getter和setter方法的一种方式。直接调用它们是错误的。
# “只读”属性可以通过只定义getter方法,不定义setter方法实现。
o.some_property
# 调用some_property的getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})
# 'properties are nice'
# “属性”是很好的功能
o.some_property()
# calling some_property getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# TypeError: 'str' object is not callable
o.some_other_property
# calling some_other_property getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})
# 'VERY nice'
# o.some_other_property()
# calling some_other_property getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# TypeError: 'str' object is not callable
o.some_property = "pythontab"
# calling some_property setter(<__main__.MyClass object at 0x7fb2b7077890>,('pythontab',),{})
o.some_property
# calling some_property getter(<__main__.MyClass object at 0x7fb2b7077890>,(),{})
# 'pythontab'
o.some_other_property = "pythontab.com"
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# AttributeError: can't set attribute
o.some_other_property
# calling some_other_property getter(<__main__.MyClass object at 0x7fb2b7077890>,(),{})


问题10

简要描述Python的垃圾回收机制(garbage collection)。


答案


这里能说的很多。你应该提到下面几个主要的点:


Python在内存中存储了每个对象的引用计数(reference count)。如果计数值变成0,那么相应的对象就会小时,分配给该对象的内存就会释放出来用作他用。

偶尔也会出现引用循环(reference cycle)。垃圾回收器会定时寻找这个循环,并将其回收。举个例子,假设有两个对象o1和o2,而且符合o1.x == o2和o2.x == o1这两个条件。如果o1和o2没有其他代码引用,那么它们就不应该继续存在。但它们的引用计数都是1。

Python中使用了某些启发式算法(heuristics)来加速垃圾回收。例如,越晚创建的对象更有可能被回收。对象被创建之后,垃圾回收器会分配它们所属的代(generation)。每个对象都会被分配一个代,而被分配更年轻代的对象是优先被处理的。


问题11

将下面的函数按照执行效率高低排序。它们都接受由0至1之间的数字构成的列表作为输入。这个列表可以很长。一个输入列表的示例如下:[random.random() for i in range(100000)]。你如何证明自己的答案是正确的。

def f1(lIn):
    l1 = sorted(lIn)
    l2 = [i for i in l1 if i<0.5]
    return [i*i for i in l2]
def f2(lIn):
    l1 = [i for i in lIn if i<0.5]
    l2 = sorted(l1)
    return [i*i for i in l2]
def f3(lIn):
    l1 = [i*i for i in lIn]
    l2 = sorted(l1)
    return [i for i in l1 if i<(0.5*0.5)]

答案


按执行效率从高到低排列:f2、f1和f3。要证明这个答案是对的,你应该知道如何分析自己代码的性能。Python中有一个很好的程序分析包,可以满足这个需求。

import cProfile
lIn = [random.random() for i in range(100000)]
cProfile.run('f1(lIn)')
cProfile.run('f2(lIn)')
cProfile.run('f3(lIn)')

为了向大家进行完整地说明,下面我们给出上述分析代码的输出结果:

>>> cProfile.run('f1(lIn)')
         4 function calls in 0.045 seconds
   Ordered by: standard name
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.009    0.009    0.044    0.044 <stdin>:1(f1)
        1    0.001    0.001    0.045    0.045 <string>:1(<module>)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
        1    0.035    0.035    0.035    0.035 {sorted}
>>> cProfile.run('f2(lIn)')
         4 function calls in 0.024 seconds
   Ordered by: standard name
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.008    0.008    0.023    0.023 <stdin>:1(f2)
        1    0.001    0.001    0.024    0.024 <string>:1(<module>)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
        1    0.016    0.016    0.016    0.016 {sorted}
>>> cProfile.run('f3(lIn)')
         4 function calls in 0.055 seconds
   Ordered by: standard name
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.016    0.016    0.054    0.054 <stdin>:1(f3)
        1    0.001    0.001    0.055    0.055 <string>:1(<module>)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
        1    0.038    0.038    0.038    0.038 {sorted}

为什么提这个问题?


定位并避免代码瓶颈是非常有价值的技能。想要编写许多高效的代码,最终都要回答常识上来——在上面的例子中,如果列表较小的话,很明显是先进行排序更快,因此如果你可以在排序前先进行筛选,那通常都是比较好的做法。其他不显而易见的问题仍然可以通过恰当的工具来定位。因此了解这些工具是有好处的。

原文来源:https://m.pythontab.com/article/1131


打开App,阅读手记
3人推荐
发表评论
随时随地看视频慕课网APP