继续浏览精彩内容
慕课网APP
程序员的梦工厂
打开
继续
感谢您的支持,我会继续努力的
赞赏金额会直接到老师账户
将二维码发送给自己后长按识别
微信支付
支付宝支付

Spark支持kerberos环境下的Kafka、Hbase传输

慕标5832272
关注TA
已关注
手记 1229
粉丝 229
获赞 1001

一、准备环境: 创建Kafka Topic和HBase表

1. 在kerberos环境下创建Kafka Topic

1.1 因为kafka默认使用的协议为PLAINTEXT,在kerberos环境下需要变更其通信协议: 在${KAFKA_HOME}/config/producer.propertiesconfig/consumer.properties下添加

security.protocol=SASL_PLAINTEXT

1.2 在执行前,需要在环境变量中添加KAFKA_OPT选项,否则kafka无法使用keytab:

export KAFKA_OPTS="$KAFKA_OPTS -Djava.security.auth.login.config=/usr/ndp/current/kafka_broker/conf/kafka_jaas.conf"

其中kafka_jaas.conf内容如下:

cat /usr/ndp/current/kafka_broker/conf/kafka_jaas.conf

KafkaServer {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=truekeyTab="/etc/security/keytabs/kafka.service.keytab"storeKey=trueuseTicketCache=falseserviceName="kafka"principal="kafka/hzadg-mammut-platform3.server.163.org@BDMS.163.COM";
};
KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useTicketCache=truerenewTicket=trueserviceName="kafka";
};
Client {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=truekeyTab="/etc/security/keytabs/kafka.service.keytab"storeKey=trueuseTicketCache=falseserviceName="zookeeper"principal="kafka/hzadg-mammut-platform3.server.163.org@BDMS.163.COM";
};

1.3 创建新的topic:

bin/kafka-topics.sh --create --zookeeper hzadg-mammut-platform2.server.163.org:2181,hzadg-mammut-platform3.server.163.org:2181 --replication-factor 1 --partitions 1 --topic spark-test

1.4 创建生产者:

bin/kafka-console-producer.sh  --broker-list hzadg-mammut-platform2.server.163.org:6667,hzadg-mammut-platform3.server.163.org:6667,hzadg-mammut-platform4.server.163.org:6667 --topic spark-test --producer.config ./config/producer.properties

1.5 测试消费者:

bin/kafka-console-consumer.sh --zookeeper hzadg-mammut-platform2.server.163.org:2181,hzadg-mammut-platform3.server.163.org:2181 --bootstrap-server hzadg-mammut-platform2.server.163.org:6667 --topic spark-test --from-beginning --new-consumer  --consumer.config ./config/consumer.properties

2. 创建HBase表

2.1 kinit到hbase账号,否则无法创建hbase表

kinit -kt /etc/security/keytabs/hbase.service.keytab  hbase/hzadg-mammut-platform2.server.163.org@BDMS.163.COM

 ./bin/hbase shell
> create 'recsys_logs', 'f'

二、编写Spark代码

编写简单的Spark Java程序,功能为: 从Kafka消费信息,同时将batch内统计的数量写入Hbase中,具体可以参考项目:

https://github.com/LiShuMing/spark-demos

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */package com.netease.spark.streaming.hbase;import com.netease.spark.utils.Consts;import com.netease.spark.utils.JConfig;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.hbase.HBaseConfiguration;import org.apache.hadoop.hbase.client.HConnection;import org.apache.hadoop.hbase.client.HConnectionManager;import org.apache.hadoop.hbase.client.HTableInterface;import org.apache.hadoop.hbase.client.Put;import org.apache.hadoop.hbase.util.Bytes;import org.apache.kafka.clients.consumer.ConsumerRecord;import org.apache.kafka.common.serialization.StringDeserializer;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.streaming.Duration;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.kafka010.ConsumerStrategies;import org.apache.spark.streaming.kafka010.KafkaUtils;import org.apache.spark.streaming.kafka010.LocationStrategies;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import java.io.IOException;import java.text.SimpleDateFormat;import java.util.Arrays;import java.util.Date;import java.util.HashMap;import java.util.HashSet;import java.util.Map;import java.util.Set;public class JavaKafkaToHBaseKerberos {  private final static Logger LOGGER = LoggerFactory.getLogger(JavaKafkaToHBaseKerberos.class);  private static HConnection connection = null;  private static HTableInterface table = null;  public static void openHBase(String tablename) throws IOException {
    Configuration conf = HBaseConfiguration.create();    synchronized (HConnection.class) {      if (connection == null)
        connection = HConnectionManager.createConnection(conf);
    }    synchronized (HTableInterface.class) {      if (table == null) {
        table = connection.getTable("recsys_logs");
      }
    }
  }  public static void closeHBase() {    if (table != null)      try {
        table.close();
      } catch (IOException e) {
        LOGGER.error("关闭 table 出错", e);
      }    if (connection != null)      try {
        connection.close();
      } catch (IOException e) {
        LOGGER.error("关闭 connection 出错", e);
      }
  }  public static void main(String[] args) throws Exception {
    String hbaseTable = JConfig.getInstance().getProperty(Consts.HBASE_TABLE);
    String kafkaBrokers = JConfig.getInstance().getProperty(Consts.KAFKA_BROKERS);
    String kafkaTopics = JConfig.getInstance().getProperty(Consts.KAFKA_TOPICS);
    String kafkaGroup = JConfig.getInstance().getProperty(Consts.KAFKA_GROUP);    // open hbase
    try {
      openHBase(hbaseTable);
    } catch (IOException e) {
      LOGGER.error("建立HBase 连接失败", e);
      System.exit(-1);
    }

    SparkConf conf = new SparkConf().setAppName("JavaKafakaToHBase");
    JavaStreamingContext ssc = new JavaStreamingContext(conf, new Duration(1000));

    Set<String> topicsSet = new HashSet<>(Arrays.asList(kafkaTopics.split(",")));
    Map<String, Object> kafkaParams = new HashMap<>();
    kafkaParams.put("bootstrap.servers", kafkaBrokers);
    kafkaParams.put("key.deserializer", StringDeserializer.class);
    kafkaParams.put("value.deserializer", StringDeserializer.class);
    kafkaParams.put("group.id", kafkaGroup);
    kafkaParams.put("auto.offset.reset", "earliest");
    kafkaParams.put("enable.auto.commit", false);    // 在kerberos环境下,这个配置需要增加
    kafkaParams.put("security.protocol", "SASL_PLAINTEXT");    // Create direct kafka stream with brokers and topics
    final JavaInputDStream<ConsumerRecord<String, String>> stream =
        KafkaUtils.createDirectStream(
            ssc,
            LocationStrategies.PreferConsistent(),
            ConsumerStrategies.<String, String>Subscribe(Arrays.asList(topicsSet.toArray(new String[0])), kafkaParams)
        );

    JavaDStream<String> lines = stream.map(new Function<ConsumerRecord<String, String>, String>() {      private static final long serialVersionUID = -1801798365843350169L;      @Override
      public String call(ConsumerRecord<String, String> record) {        return record.value();
      }
    }).filter(new Function<String, Boolean>() {      private static final long serialVersionUID = 7786877762996470593L;      @Override
      public Boolean call(String msg) throws Exception {        return msg.length() > 0;
      }
    });

    JavaDStream<Long> nums = lines.count();

    nums.foreachRDD(new VoidFunction<JavaRDD<Long>>() {      private SimpleDateFormat sdf = new SimpleDateFormat("yyyyMMdd HH:mm:ss");      @Override
      public void call(JavaRDD<Long> rdd) throws Exception {
        Long num = rdd.take(1).get(0);
        String ts = sdf.format(new Date());
        Put put = new Put(Bytes.toBytes(ts));
        put.add(Bytes.toBytes("f"), Bytes.toBytes("nums"), Bytes.toBytes(num));
        table.put(put);
      }
    });

    ssc.start();
    ssc.awaitTermination();
    closeHBase();
  }
}

三、 编译并在Yarn环境下运行

3.1 切到项目路径下,编译项目:

mvn clean package

3.2 运行Spark环境

  • 由于executor需要访问kafka,所以需要将Kafka授权过的kerberos用户下发至executor中;

  • 由于集群环境的hdfs也是kerberos加密的,需要通过spark.yarn.keytab/spark.yarn.principal配置可以访问Hdfs/HBase的keytab信息;

在项目目录下执行如下:

/usr/ndp/current/spark2_client/bin/spark-submit \
--files ./kafka_client_jaas.conf,./kafka.service.keytab \
--conf "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=./kafka_client_jaas.conf" \
--driver-java-options "-Djava.security.auth.login.config=./kafka_client_jaas.conf" \
--conf spark.yarn.keytab=/etc/security/keytabs/hbase.service.keytab \
--conf spark.yarn.principal=hbase/hzadg-mammut-platform1.server.163.org@BDMS.163.COM \
--class com.netease.spark.streaming.hbase.JavaKafkaToHBaseKerberos \--master yarn  \
--deploy-mode client \
./target/spark-demo-0.1.0-jar-with-dependencies.jar

其中kafka_client_jaas.conf文件具体内容如下:

cat kafka_client_jaas.conf

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=truerenewTicket=truekeyTab="./kafka.service.keytab"storeKey=trueuseTicketCache=falseserviceName="kafka"principal="kafka/hzadg-mammut-platform1.server.163.org@BDMS.163.COM";
};

3.2 执行结果

webp

WX20180514-194157@2x.png

webp

WX20180514-194225@2x.png



作者:分裂四人组
链接:https://www.jianshu.com/p/4660bb5146aa


打开App,阅读手记
0人推荐
发表评论
随时随地看视频慕课网APP