如何正确构造具有单个出口的递归函数?

我编写了一个递归函数来增强 pandas.DataFrame.describe。它将峰度和偏斜添加为行。它还创建了第二个描述表来转置第一个描述表,以便您获得汇总统计数据的摘要。


它工作得很好,只是我不喜欢编写具有多个出口的函数。我尝试用一个 return 语句编写它(请参阅注释掉的部分),但它会在一个表中创建两个转置表。正确,但太多了。


def get_better_desc(df, recursions: int = 1):

    '''Adds kurtosis and skew to pandas.DataFrame.describe output. And, creates

    second transposed version of this table called on itself for summary stats

    of summary stats.

    Parameters:

        df: pandas.DataFrame, or Series but its super_desc isn't so meaningful.

        recursions: integer number of times to apply recursively to create

            super_desc. Default value of 1 is all that is necessary.

    Returns:

        better_desc: pandas.Dataframe (or Series) with kurtosis and skew added.

        super_desc: pandas.DataFrame (or Series) of better_desc transposed and

            made into a better_desc itself.'''

    

    kurt = df.kurtosis()

    kurt.name = 'kurt'

    skew = df.skew()

    skew.name = 'skew'

    better_desc = df.describe().append([kurt, skew])

    

    if recursions > 0:

        super_desc = get_better_desc(better_desc.transpose(),

                                     recursions=(recursions - 1))

        return better_desc, super_desc

    else:

        return better_desc


#     if recursions > 0:

#         super_desc = get_better_desc(better_desc.transpose(),

#                                      recursions=(recursions - 1))

#     else:

#         super_desc = better_desc

    

#     return better_desc, super_desc


慕侠2389804
浏览 90回答 1
1回答

陪伴而非守候

该函数返回两个数据帧,如果您只将其分配给一个变量,而不是忽略第二个返回值,它会将两者分配给该变量。在递归调用中,您只需指定第一个表,即 returns 列表中的第一个元素[0]。...if recursions > 0:&nbsp; &nbsp; &nbsp; &nbsp; super_desc = get_better_desc(better_desc.transpose(),&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;recursions=(recursions - 1))[0] #<=&nbsp; &nbsp; else:&nbsp; &nbsp; &nbsp; &nbsp; super_desc = better_desc&nbsp; &nbsp;&nbsp;&nbsp; &nbsp; return better_desc, super_desc
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python