我正在做一个关于情感分析的基本 NLP 项目,我想使用 GridsearchCV 来优化我的模型。
下面的代码显示了我正在使用的示例数据框。“Content”是要传递给 CountVectorizer 的列,“label”是要预测的 y 列,feature_1、feature_2 也是我希望包含在模型中的列。
'content': 'Got flat way today Pot hole Another thing tick crap thing happen week list',
'feature_1': '1',
'feature_2': '34',
'label':1},
{'content': 'UP today Why doe head hurt badly',
'feature_1': '5',
'feature_2': '142',
'label':1},
{'content': 'spray tan fail leg foot Ive scrubbing foot look better ',
'feature_1': '7',
'feature_2': '123',
'label':0},])
我正在关注 stackoverflow 的答案:使用管道和网格搜索执行功能选择
from sklearn.pipeline import FeatureUnion, Pipeline
from sklearn.base import TransformerMixin, BaseEstimator
class CustomFeatureExtractor(BaseEstimator, TransformerMixin):
def __init__(self, feature_1=True, feature_2=True):
self.feature_1=feature_1
self.feature_2=feature_2
def extractor(self, tweet):
features = []
if self.feature_2:
features.append(df['feature_2'])
if self.feature_1:
features.append(df['feature_1'])
return np.array(features)
def fit(self, raw_docs, y):
return self
def transform(self, raw_docs):
return np.vstack(tuple([self.extractor(tweet) for tweet in raw_docs]))
下面是我尝试将数据框放入的网格搜索:
lr = LogisticRegression()
# Pipeline
pipe = Pipeline([('features', FeatureUnion([("vectorizer", CountVectorizer(df['content'])),
("extractor", CustomFeatureExtractor())]))
,('classifier', lr())
])
But yields results: TypeError: 'LogisticRegression' object is not callable
想知道是否还有其他更简单的方法可以做到这一点?
catspeake
相关分类