我正在尝试使用 Rkeras
包运行一维 CNN。我正在尝试创建具有以下规范的一维卷积神经网络(CNN)架构
library(keras)
library(deepviz)
#create a neural network with a convolutional layer and train the model
model <- keras_model_sequential() %>%
layer_conv_1d(filters=32, kernel_size=4, activation="relu", input_shape=c(100, 10)) %>%
layer_max_pooling_1d(pool_size=2) %>%
layer_conv_1d(filters=64, kernel_size=4, activation="relu") %>%
layer_max_pooling_1d(pool_size=5) %>%
layer_conv_1d(filters=128, kernel_size=4, activation="relu") %>%
layer_max_pooling_1d(pool_size=5) %>%
layer_conv_1d(filters=256, kernel_size=4, activation="relu") %>%
layer_max_pooling_1d(pool_size=5) %>%
layer_dropout(rate=0.4) %>%
layer_flatten() %>%
layer_dense(units=100, activation="relu") %>%
layer_dropout(rate=0.2) %>%
layer_dense(units=1, activation="linear")
但它给了我以下错误
py_call_impl(callable,dots$args,dots$keywords)中的错误:ValueError:由于输入形状为:[?,1,1,128]的“conv1d_20/conv1d”(op:“Conv2D”)从1中减去4而导致负尺寸大小,[1,4,128,256]。
如何解决错误?
还有一个问题,如何优化filters、、、、?在我的问题中是一个任意值。如何决定输入大小?kernel_sizepool_sizerateunitsinput_shape=c(100, 10)
牧羊人nacy
相关分类