我是Python新手。我按照这个网站作为指导来进行一些未来的预测。完成所有操作后,图表没有显示,并且出现以下错误:
2020-10-09 08:27:09.619051: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found
2020-10-09 08:27:09.620905: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
这是我写的代码:
import pandas as pd
import numpy as np
import tensorflow as tf
import keras
from keras.preprocessing.sequence import TimeseriesGenerator
from keras.models import Sequential
from keras.layers import LSTM, Dense
import plotly.graph_objects as go
df = pd.read_excel('T:/Python/NRN-Netze_Python/Stromverbrauch2Jahren.xlsx')
print(df.info())
df['Datum'] = pd.to_datetime(df['Datum'])
df.set_axis(df['Datum'], inplace = True)
df.drop(columns = ['Datum_u_Uhrzeit', 'Stunden', 'Minuten', 'Uhrzeit'], inplace = True)
value = df['Werte'].values
value = value.reshape((-1, 1))
split_percent = 0.80
split = int(split_percent * len(value))
value_train = value[:split]
value_test = value[split:]
date_train = df['Datum'][:split]
date_test = df['Datum'][split:]
print('')
print(len(value_train))
print(len(value_test))
look_back = 15
train_generator = TimeseriesGenerator(value_train, value_train, length = look_back, batch_size = 20)
test_generator = TimeseriesGenerator(value_test, value_test, length = look_back, batch_size = 1)
model = Sequential()
model.add(LSTM(10, activation = 'relu', input_shape = (look_back, 1)))
model.add(Dense(1))
model.compile(optimizer = 'adam', loss = 'mse')
num_epochs = 25
model.fit(train_generator, epochs = num_epochs, verbose = 1)
prediction = model.predict(test_generator)
value_train = value_train.reshape((-1))
value_test = value_test.reshape((-1))
prediction = prediction.reshape((-1))
trace1 = go.Scatter(
x = date_train,
y = value_train,
mode = 'lines',
name = 'Original'
)
素胚勾勒不出你
相关分类