我的目录中有大约 200 个 CSV 文件,其中包含不同的列,但有些文件包含我想要提取的数据。我想要拉的一列称为“程序”(行的顺序不同,但名称相同),另一列包含“建议”(并非所有措辞都相同,但它们都会包含该措辞)。最终,我想为每个 CSV 提取这些列下的所有行,并将它们附加到仅包含这两列的数据框中。我曾尝试先使用一个 CSV 执行此操作,但无法使其工作。这是我尝试过的:
import pandas as pd
from io import StringIO
df = pd.read_csv("test.csv")
dfout = pd.DataFrame(columns=['Programme', 'Recommends'])
for file in [df]:
dfn = pd.read_csv(file)
matching = [s for s in dfn.columns if "would recommend" in s]
if matching:
dfn = dfn.rename(columns={matching[0]:'Recommends'})
dfout = pd.concat([dfout, dfn], join="inner")
print(dfout)
我收到以下错误消息,所以我认为这是格式问题(它不喜欢 pandas df?): ValueError(msg.format(_type=type(filepath_or_buffer))) ValueError: 无效的文件路径或缓冲区对象类型: <类'pandas.core.frame.DataFrame'>
当我尝试这个时:
csv1 = StringIO("""Programme,"Overall, I am satisfied with the quality of the programme",I would recommend the company to a friend or colleague,Please comment on any positive aspects of your experience of this programme
Nursing,4,4,IMAGE
Nursing,1,3,very good
Nursing,4,5,I enjoyed studying tis programme""")
csv2 = StringIO("""Programme,I would recommend the company to a friend,The programme was well organised and running smoothly,It is clear how students' feedback on the programme has been acted on
IT,4,2,4
IT,5,5,5
IT,5,4,5""")
dfout = pd.DataFrame(columns=['Programme', 'Recommends'])
for file in [csv1,csv2]:
dfn = pd.read_csv(file)
matching = [s for s in dfn.columns if "would recommend" in s]
if matching:
dfn = dfn.rename(columns={matching[0]:'Recommends'})
dfout = pd.concat([dfout, dfn], join="inner")
print(dfout)
这工作正常,但我需要读取 CSV 文件。有任何想法吗?
上面示例的预期输出:
撒科打诨
相关分类