这是我使用的数据集的链接:数据集
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#Lets begin with polynomial regression
df = pd.read_excel('enes.xlsx', index='hacim')
X=pd.DataFrame(df['hacim'])
Y=pd.DataFrame(df['delay'])
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree = 4)
X_poly = poly_reg.fit_transform(X)
lin_reg_2 = LinearRegression()
lin_reg_2.fit(X_poly, Y)
plt.scatter(X, Y, color = 'red')
plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color = 'blue')
plt.title('X Vs Y')
plt.xlabel('hacim')
plt.ylabel('delay')
plt.show()
最后 plt.show 显示了一个图表,其中有很多行,而不是我想要的单行多项式回归。出了什么问题,我该如何解决这个问题?
数据
,hacim,delay
0,815,1.44
1,750,1.11
2,321,2.37
3,1021,1.44
4,255,1.09
5,564,1.61
6,1455,15.27
7,525,2.7
8,1118,106.98
9,1036,3.47
10,396,1.34
11,1485,21.49
12,1017,12.22
13,1345,2.72
14,312,1.71
15,742,33.79
16,1100,39.62
17,1445,4.88
18,847,1.55
19,991,1.82
20,1296,10.77
21,854,1.81
22,1198,61.9
23,1162,8.22
24,1463,42.25
25,1272,4.31
26,745,2.36
27,521,2.14
28,1247,94.33
29,732,12.55
30,489,1.05
31,1494,12.78
32,591,3.18
33,257,1.18
34,602,4.24
35,335,2.06
36,523,3.63
37,752,7.61
38,349,1.76
39,771,0.79
40,855,39.08
41,948,3.95
42,1378,97.28
43,598,2.69
44,558,1.67
45,634,34.69
46,1146,12.22
47,1087,1.74
48,628,1.03
49,711,3.34
50,1116,7.27
51,748,1.09
52,1212,14.16
53,434,1.42
54,1046,8.25
55,568,1.33
56,894,2.61
57,1041,4.79
58,801,1.84
59,1387,11.5
60,1171,161.21
61,734,2.43
62,1471,17.42
63,461,1.42
64,751,2.36
65,898,2.4
66,593,1.74
67,942,3.39
68,825,1.09
69,715,20.23
70,725,5.43
71,1128,7.57
72,1348,4.49
73,1393,9.77
74,1379,97.76
75,859,2.59
76,612,15.98
77,1495,8.22
78,887,1.85
79,867,38.65
80,1353,1.6
81,851,60.25
82,1079,24.05
83,1100,25.58
84,638,1.23
85,1115,1.94
86,1443,4.79
87,1421,10.33
88,1279,7.29
89,1176,173.44
90,315,1.53
91,1019,34.03
92,1337,48.67
93,576,28.83
94,919,2.88
95,361,1.5
96,989,1.47
97,1286,32.11
Qyouu
相关分类