您好,我正在尝试在模型中输入多个数据集。这是我的问题的一个例子,但在我的例子中,我的模型之一有 2 个输入参数,而另一个模型有 1 个。我在我的案例中遇到的错误是:
Failed to find data adapter that can handle input: (<class 'list'> containing values of types {"<class 'tensorflow.python.data.ops.dataset_ops.BatchDataset'>", "<class 'tensorflow.python.data.ops.dataset_ops.TakeDataset'>"}), <class 'NoneType'>
代码:
import tensorflow as tf
# Create first model
model1 = tf.keras.Sequential()
model1.add(tf.keras.layers.Dense(1))
model1.compile()
model1.build([None,3])
# Create second model
model2 = tf.keras.Sequential()
model2.add(tf.keras.layers.Dense(1))
model2.compile()
model2.build([None,3])
# Concatenate
fusion_model = tf.keras.layers.Concatenate()([model1.output, model2.output])
t = tf.keras.layers.Dense(1, activation='tanh')(fusion_model)
model = tf.keras.models.Model(inputs=[model1.input, model2.input], outputs=t)
model.compile()
#Datasets
ds1 = tf.data.Dataset.from_tensors(([1,2,3],1))
ds2 = tf.data.Dataset.from_tensors(([1,2,3], 2))
print(ds1)
print(ds2)
# Fit
model.fit([ds1,ds2])
运行此示例代码会产生:
Failed to find data adapter that can handle input: (<class 'list'> containing values of types {"<class 'tensorflow.python.data.ops.dataset_ops.TensorDataset'>"}), <class 'NoneType'>
我需要使用数据集模块,因为它们提供内置的数据延迟加载。
慕桂英546537
qq_笑_17
慕的地8271018
相关分类