自定义估计器无法通过 cross_val_score 进行深度复制

我有一个自己实现的自定义估计器,但无法使用,我相信这与我的方法cross_val_score()有关。predict()这是完整的错误跟踪:


    Traceback (most recent call last):

  File "/Users/joann/Desktop/Implementações ML/Adaboost Classifier/test.py", line 30, in <module>

    ada2_score = cross_val_score(ada_2, X, y, cv=5)

  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 390, in cross_val_score

    error_score=error_score)

  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 236, in cross_validate

    for train, test in cv.split(X, y, groups))

  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 1004, in __call__

    if self.dispatch_one_batch(iterator):

  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 835, in dispatch_one_batch

    self._dispatch(tasks)

  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 754, in _dispatch

    job = self._backend.apply_async(batch, callback=cb)

  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 209, in apply_async

    result = ImmediateResult(func)

  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 590, in __init__

    self.results = batch()

  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 256, in __call__

    for func, args, kwargs in self.items]


我的predict(self, X)方法返回一个大小向量n_samples以及参数的预测X。我还做了一个score()功能如下:

def score(self, X, y):
    scr_pred = self.predict(X)
        return sum(scr_pred == y) / X.shape[0]

该方法只是计算给定样本的模型的准确性。如果我使用此score()方法或设置 across_val_score(... , scoring="accuracy")它不起作用。


交互式爱情
浏览 141回答 1
1回答

有只小跳蛙

然而,您的问题陈述在这里并不清楚,但是查看错误,您似乎正在尝试多类分类。这里的问题是,您的代码中可能在某些时候没有正确完成预处理,因为错误是从 inverse_binarize_thresholding 记录的,这是由于 sklearn 预处理的以下功能而引发的:def _inverse_binarize_thresholding(y, output_type, classes, threshold):        if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2:             raise ValueError("output_type='binary', but y.shape = {0}".                                     format(y.shape))您的代码中必须缺少一些转换或预处理,并且您必须正确使用 LabelBinarizer
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python