我创建了一个多类分类模型,其中输出变量有 6 个类。当我尝试获取准确度分数时出现错误。我尝试过其他答案,但答案没有帮助。
代码
#Converting Target Variable to Numeric
lang = {'US':1, 'UK':2, 'GE':3, 'IT':4, 'FR':5, 'ES':6}
df.language = [lang[item] for item in df.language]
#Creating Input Features and Target Variables
X= df.iloc[:,1:13]
y= df.iloc[:,0]
#Standardizing the Input Features
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X)
#Train Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
#Model
model = Sequential()
model.add(Dense(12, activation='relu', kernel_initializer='random_normal', input_dim=12))
model.add(Dense(10, activation='relu', kernel_initializer='random_normal'))
model.add(Dense(8, activation='relu', kernel_initializer='random_normal'))
#Output Layer
model.add(Dense(7, activation = 'softmax', kernel_initializer='random_normal'))
#Compiling the neural network
model.compile(optimizer ='adam',loss='sparse_categorical_crossentropy', metrics =['accuracy'])
#Fitting the data to the training dataset
model.fit(X_train,y_train, batch_size=5, epochs=100)
#Make predictions
pred_train = model.predict(X_train)
pred_test = model.predict(X_test)
print('Train Accuracy = ',accuracy_score(y_train,pred_train.round()))
print('Test Accuracy = ',accuracy_score(y_test,pred_test.round()))
错误
ValueError: Classification metrics can't handle a mix of multiclass and multilabel-indicator targets
变量保存的值 我正在添加所需变量保存的值。我相信我收到的输出变量的数量不正确,因为 1 个值有多个输出。
大话西游666
相关分类