我下面有一个非常基本的脚本来演示该问题:
from imblearn.over_sampling import ADASYN
import pandas as pd, numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
data = pd.read_csv('glass.csv')
classes = data.values[:, -1]
data = data.iloc[:, :-1]
adasyn = ADASYN(sampling_strategy='not majority', random_state=8, n_neighbors=3)
new_data, new_classes = adasyn.fit_resample(data, classes)
X_train, X_test, y_train, y_test = train_test_split(new_data, new_classes, test_size = 0.20)
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
print("Score: {}".format(rfc.score(X_test, y_test)))
目的是平衡以下类别的不平衡:
(214, 10) Class=1, Count=70, Percentage=32.710% Class=2, Count=76, Percentage=35.514% Class=3, Count=17, Percentage=7.944% Class=5, Count=13, Percentage=6.075% Class=6, Count=9, Percentage=4.206% Class=7, Count=29, Percentage=13.551%
拥有相等(或接近相等)的样本。然而,运行上面的代码会产生:
ValueError: No samples will be generated with the provided ratio settings.
更改为成功地对类 进行过采样ADASYN
,并将其带入样本,但仍然使其余类不平衡。因此,我正在寻找一种使用 ADASYN对所有少数类别进行完全过采样的方法。sampling_strategy
minority
minority
6
74
ADASYN 文档指出: 'not majority': resample all classes but the majority class;
但这显然没有发生。
千巷猫影
相关分类