慕的地8271018
Conv2D需要 4D 输入,您无法更改它。我不太确定你想要完成什么,但你可以使用Conv3D:from tensorflow.keras.layers import *from tensorflow.keras.models import Sequentialimport tensorflow as tfmodel = Sequential([ Input(shape=(None, 128, 128, 1)), Conv3D(32, kernel_size=(1, 3, 3)), Flatten()])multiple_images = tf.random.uniform((10, 10, 128, 128, 1), dtype=tf.float32)model(multiple_images)<tf.Tensor: shape=(10, 5080320), dtype=float32, numpy=array([[-0.26742983, -0.09689523, -0.12120364, ..., -0.02987139, 0.05515741, 0.12026916], [-0.18898709, 0.12448274, -0.17439063, ..., 0.23424357, -0.06001307, -0.13852882], [-0.14464797, 0.26356792, -0.34748033, ..., 0.07819699, -0.11639086, 0.10701762], ..., [-0.1536693 , 0.13642962, -0.18564 , ..., 0.07165999, -0.0173855 , -0.04348694], [-0.32320747, 0.09207243, -0.22274591, ..., 0.11940736, -0.02635285, -0.1140241 ], [-0.21126074, -0.00094431, -0.10933039, ..., 0.06002581, -0.09649743, 0.09335127]], dtype=float32)>