这段代码适合 python 中的回归树。我想将此基于文本的输出转换为表格格式。
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeRegressor
from sklearn import tree
dataset = np.array(
[['Asset Flip', 100, 1000],
['Text Based', 500, 3000],
['Visual Novel', 1500, 5000],
['2D Pixel Art', 3500, 8000],
['2D Vector Art', 5000, 6500],
['Strategy', 6000, 7000],
['First Person Shooter', 8000, 15000],
['Simulator', 9500, 20000],
['Racing', 12000, 21000],
['RPG', 14000, 25000],
['Sandbox', 15500, 27000],
['Open-World', 16500, 30000],
['MMOFPS', 25000, 52000],
['MMORPG', 30000, 80000]
])
X = dataset[:, 1:2].astype(int)
y = dataset[:, 2].astype(int)
regressor = DecisionTreeRegressor(random_state = 0)
regressor.fit(X, y)
text_rule = tree.export_text(regressor )
print(text_rule)
我得到的输出是这样的
print(text_rule)
|--- feature_0 <= 20750.00
| |--- feature_0 <= 7000.00
| | |--- feature_0 <= 1000.00
| | | |--- feature_0 <= 300.00
| | | | |--- value: [1000.00]
| | | |--- feature_0 > 300.00
| | | | |--- value: [3000.00]
| | |--- feature_0 > 1000.00
| | | |--- feature_0 <= 2500.00
| | | | |--- value: [5000.00]
| | | |--- feature_0 > 2500.00
| | | | |--- feature_0 <= 4250.00
| | | | | |--- value: [8000.00]
| | | | |--- feature_0 > 4250.00
| | | | | |--- feature_0 <= 5500.00
| | | | | | |--- value: [6500.00]
| | | | | |--- feature_0 > 5500.00
| | | | | | |--- value: [7000.00]
| |--- feature_0 > 7000.00
| | |--- feature_0 <= 13000.00
| | | |--- feature_0 <= 8750.00
| | | | |--- value: [15000.00]
| | | |--- feature_0 > 8750.00
我想在 pandas 表中转换此规则,类似于以下形式。这个怎么做 ?
规则的情节版本是这样的(供参考)。请注意,在表中我显示了规则的最左边部分。
蓝山帝景
慕姐4208626
相关分类