模型输入必须来自“tf.keras.Input”...,它们不能是先前非输入层的输出

我正在使用Python 3.7.7。和张量流 2.1.0。

我有一个预训练的 U-Net 网络,我想获取它的编码器解码器

如下图所示:

http://img4.mukewang.com/64b5f6a5000184d206470197.jpg

您可以看到卷积编码器-解码器架构。我想要获取编码器部分,即出现在图像左侧的图层:

http://img2.mukewang.com/64b5f6af0001524903020304.jpg

以及解码器部分:

http://img4.mukewang.com/64b5f6b8000184af04300241.jpg

我从这个函数中得到了 U-Net 模型:


def get_unet_uncompiled(img_shape = (200,200,1)):

    inputs = Input(shape=img_shape)


    conv1 = Conv2D(64, (5, 5), activation='relu', padding='same', data_format="channels_last", name='conv1_1')(inputs)

    conv1 = Conv2D(64, (5, 5), activation='relu', padding='same', data_format="channels_last", name='conv1_2')(conv1)

    pool1 = MaxPooling2D(pool_size=(2, 2), data_format="channels_last", name='pool1')(conv1)

    conv2 = Conv2D(96, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv2_1')(pool1)

    conv2 = Conv2D(96, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv2_2')(conv2)

    pool2 = MaxPooling2D(pool_size=(2, 2), data_format="channels_last", name='pool2')(conv2)


    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv3_1')(pool2)

    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv3_2')(conv3)

    pool3 = MaxPooling2D(pool_size=(2, 2), data_format="channels_last", name='pool3')(conv3)


    conv4 = Conv2D(256, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv4_1')(pool3)

    conv4 = Conv2D(256, (4, 4), activation='relu', padding='same', data_format="channels_last", name='conv4_2')(conv4)

    pool4 = MaxPooling2D(pool_size=(2, 2), data_format="channels_last", name='pool4')(conv4)


POPMUISE
浏览 88回答 1
1回答

繁星淼淼

我的建议是定义编码器和解码器的结构(get_encoder,get_decoder)。在整个模型的训练之后,我们的想法是创建一个新的解码器架构(通过get_decoder),我们可以用解码器训练的权重来填充它pythonic 来说你可以用这种方式做到这一点......def get_crop_shape(target, refer):        # width, the 3rd dimension    cw = (target.get_shape()[2] - refer.get_shape()[2])    assert (cw >= 0)    if cw % 2 != 0:        cw1, cw2 = cw // 2, cw // 2 + 1    else:        cw1, cw2 = cw // 2, cw // 2    # height, the 2nd dimension    ch = (target.get_shape()[1] - refer.get_shape()[1])    assert (ch >= 0)    if ch % 2 != 0:        ch1, ch2 = ch // 2, ch // 2 + 1    else:        ch1, ch2 = ch // 2, ch // 2    return (ch1, ch2), (cw1, cw2)def get_encoder(img_shape):        inp = Input(shape=img_shape)    conv1 = Conv2D(64, (5, 5), activation='relu', padding='same', data_format="channels_last", name='conv1_1')(inp)    conv1 = Conv2D(64, (5, 5), activation='relu', padding='same', data_format="channels_last", name='conv1_2')(conv1)    pool1 = MaxPooling2D(pool_size=(2, 2), data_format="channels_last", name='pool1')(conv1)    conv2 = Conv2D(96, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv2_1')(pool1)    conv2 = Conv2D(96, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv2_2')(conv2)    pool2 = MaxPooling2D(pool_size=(2, 2), data_format="channels_last", name='pool2')(conv2)    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv3_1')(pool2)    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv3_2')(conv3)    pool3 = MaxPooling2D(pool_size=(2, 2), data_format="channels_last", name='pool3')(conv3)    conv4 = Conv2D(256, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv4_1')(pool3)    conv4 = Conv2D(256, (4, 4), activation='relu', padding='same', data_format="channels_last", name='conv4_2')(conv4)    pool4 = MaxPooling2D(pool_size=(2, 2), data_format="channels_last", name='pool4')(conv4)    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv5_1')(pool4)    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv5_2')(conv5)        return conv5,conv4,conv3,conv2,conv1,inpdef get_decoder(convs):        conv5,conv4,conv3,conv2,conv1,inputs = convs        up_conv5 = UpSampling2D(size=(2, 2), data_format="channels_last", name='up_conv5')(conv5)    ch, cw = get_crop_shape(conv4, up_conv5)    crop_conv4 = Cropping2D(cropping=(ch, cw), data_format="channels_last", name='crop_conv4')(conv4)    up6 = concatenate([up_conv5, crop_conv4])    conv6 = Conv2D(256, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv6_1')(up6)    conv6 = Conv2D(256, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv6_2')(conv6)    up_conv6 = UpSampling2D(size=(2, 2), data_format="channels_last", name='up_conv6')(conv6)    ch, cw = get_crop_shape(conv3, up_conv6)    crop_conv3 = Cropping2D(cropping=(ch, cw), data_format="channels_last", name='crop_conv3')(conv3)    up7 = concatenate([up_conv6, crop_conv3])    conv7 = Conv2D(128, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv7_1')(up7)    conv7 = Conv2D(128, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv7_2')(conv7)    up_conv7 = UpSampling2D(size=(2, 2), data_format="channels_last", name='up_conv7')(conv7)    ch, cw = get_crop_shape(conv2, up_conv7)    crop_conv2 = Cropping2D(cropping=(ch, cw), data_format="channels_last", name='crop_conv2')(conv2)    up8 = concatenate([up_conv7, crop_conv2])    conv8 = Conv2D(96, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv8_1')(up8)    conv8 = Conv2D(96, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv8_2')(conv8)    up_conv8 = UpSampling2D(size=(2, 2), data_format="channels_last", name='up_conv8')(conv8)    ch, cw = get_crop_shape(conv1, up_conv8)    crop_conv1 = Cropping2D(cropping=(ch, cw), data_format="channels_last", name='crop_conv1')(conv1)    up9 = concatenate([up_conv8, crop_conv1])    conv9 = Conv2D(64, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv9_1')(up9)    conv9 = Conv2D(64, (3, 3), activation='relu', padding='same', data_format="channels_last", name='conv9_2')(conv9)    ch, cw = get_crop_shape(inputs, conv9)    conv9 = ZeroPadding2D(padding=(ch, cw), data_format="channels_last", name='conv9_3')(conv9)    conv10 = Conv2D(1, (1, 1), activation='sigmoid', data_format="channels_last", name='conv10_1')(conv9)        return conv10    def get_unet(img_shape = (200,200,1)):    enc = get_encoder(img_shape)        dec = get_decoder(enc)        model = Model(inputs=enc[-1], outputs=dec)    return model创建整个模型并拟合img_shape = (200,200,1)old_model = get_unet(img_shape)# old_model.compile(...)# old_model.fit(...)一如既往地提取编码器# extract encoderfirst_encoder_layer = 0last_encoder_layer = 14encoder_output_layer = [14, 11, 8, 5, 2, 0]encoder = Model(inputs=old_model.layers[first_encoder_layer].input,                outputs=[old_model.layers[l].output for l in encoder_output_layer],                name='encoder')encoder.summary()创建解码器结构并分配训练后的权重# extract decoder fitted weightsrestored_w = []for w in old_model.layers[last_encoder_layer + 1:]:    restored_w.extend(w.get_weights())  # reconstruct decoder architecture setting the fitted weightsnew_inp = [Input(l.shape[1:]) for l in get_encoder(img_shape)]new_dec = get_decoder(new_inp)decoder = Model(new_inp, new_dec)decoder.set_weights(restored_w)decoder.summary()返回预测# generate random imagesn_images = 20X = np.random.uniform(0,1, (n_images,200,200,1)).astype('float32')# get encoder predictions pred_encoder = encoder.predict(X)print([p.shape for p in pred_encoder])# get decoder predictionspred_decoder = decoder.predict(pred_encoder)print(pred_decoder.shape)
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python