假设我有一个包含两列、一个字符串和一个日期时间的 pandas 数据框,如下所示:
ORDER TIMESTAMP
GO 6/4/2019 09:59:49.497000
STAY 6/4/2019 09:05:27.036000
WAIT 6/4/2019 10:33:05.645000
GO 6/4/2019 10:28:03.649000
STAY 6/4/2019 11:23:11.614000
GO 6/4/2019 11:00:33.574000
WAIT 6/4/2019 11:41:55.744000
我想创建一个列表,其中每个条目都是一个包含三个值的列表。对于每个选择的时间间隔(例如一小时),每个条目是:[开始时间、总行数、顺序为 GO 的行的百分比]。
例如,对于上面的数据框,我的列表是:
[6/4/2019 09:00:00.000000, 2, 50]
[6/4/2019 10:00:00.000000, 2, 50]
[6/4/2019 11:00:00.000000, 3, 33.3]
我创建了一个简单的 while 循环:
go= []
while t<=df["timestamp"].iloc[-1]:
tmp1 = df[(df["date_time"]>=t) & (df["timestamp"]<t+timedelta(hour=1))]
tmp2 = df[(df["date_time"]>=t) & (df["timestamp"]<t+timedelta(hour=1)) & (df["Order"]=="GO")]
go.append([t, tmp1.shape[0], 100.0*tmp2.shape[0]/tmp1.shape[0]])
#increment the time by the interval
t=t+timedelta(hour=1)
然而,我的初始数据帧有数百万行,我希望我的时间间隔比一个小时短得多,所以这种方法非常慢。更Pythonic的方法是什么?
小怪兽爱吃肉
相关分类