我想获得矢量大小(46)。但我得到了数组。我使用的数据集是路透社。
我打印 NN 预测的地方是代码的最后几行。
代码:
from keras.datasets import reuters
from keras import models, layers, losses
from keras.utils.np_utils import to_categorical
import numpy as np
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)
word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
def vectorize_sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))
for i, equences in enumerate(sequences):
results[i, sequences] = 1.
return results
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]
history = model.fit(partial_x_train,
partial_y_train,
epochs=9,
batch_size=128,
validation_data=(x_val, y_val))
predictions = model.predict(x_test)
predictions[0].shape
print(predictions)
输出:
# WHY?
[[4.2501447e-06 1.9825067e-07 2.3206076e-07 ... 2.1613120e-07
9.8317461e-09 1.3596014e-07]
[1.6055314e-02 1.4951903e-01 1.4057434e-04 ... 1.1199807e-04
1.8230558e-06 2.4111385e-03]
[7.8554759e-03 6.6994888e-01 1.6705523e-03 ... 4.0704478e-04
2.4865860e-05 7.2334736e-04]
...
Smart猫小萌
相关分类