为什么我得到的是数组而不是向量大小?

我想获得矢量大小(46)。但我得到了数组。我使用的数据集是路透社。


我打印 NN 预测的地方是代码的最后几行。


代码:


from keras.datasets import reuters

from keras import models, layers, losses

from keras.utils.np_utils import to_categorical

import numpy as np


(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)


word_index = reuters.get_word_index()

reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])

decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])


def vectorize_sequences(sequences, dimension=10000):

    results = np.zeros((len(sequences), dimension))

    for i, equences in enumerate(sequences):

        results[i, sequences] = 1.

    return results


x_train = vectorize_sequences(train_data)

x_test = vectorize_sequences(test_data)


one_hot_train_labels = to_categorical(train_labels)

one_hot_test_labels = to_categorical(test_labels)


model = models.Sequential()

model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(46, activation='softmax'))


model.compile(optimizer='adam',

            loss='categorical_crossentropy', 

            metrics=['accuracy'])


x_val = x_train[:1000]

partial_x_train = x_train[1000:]


y_val = one_hot_train_labels[:1000]

partial_y_train = one_hot_train_labels[1000:]


history = model.fit(partial_x_train,

                    partial_y_train,

                    epochs=9, 

                    batch_size=128, 

                    validation_data=(x_val, y_val))


predictions = model.predict(x_test)


predictions[0].shape

print(predictions)

输出:


# WHY?                

[[4.2501447e-06 1.9825067e-07 2.3206076e-07 ... 2.1613120e-07

  9.8317461e-09 1.3596014e-07]

 [1.6055314e-02 1.4951903e-01 1.4057434e-04 ... 1.1199807e-04

  1.8230558e-06 2.4111385e-03]

 [7.8554759e-03 6.6994888e-01 1.6705523e-03 ... 4.0704478e-04

  2.4865860e-05 7.2334736e-04]

 ...



手掌心
浏览 118回答 1
1回答

Smart猫小萌

用于#%%创建单元格,您将运行独立的代码片段。它看起来像Python Shell
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python