我是 tensorflow 的新手,我正在制作一个可以进行乘法运算的 AI,
我需要制作它以便我的模型可以将列表作为输入。
这是我的代码:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
multiplication_q = np.array([[10,10],[1,1],[2,2],[0,0],[3,3],[4,4],[5,5],[6,6],[7,7],[8,8],[9,9],[1,0],[11,10],[27,0],[30,2],[4,3],[17,22],[20,0],[8,13],[21,4],[19,24],[11,19],[8,2],[4,5],[11,11],[1,15],[2,12],[15,3],[18,0],[49,7],[5,7],[12,4]], dtype=object)
multiplication_a = np.array([100,1,4,0,9,16,25,36,49,64,96,0,110,0,60,12,374,0,104,84,456,209,16,20,121,15,24,45,0,343,35,48], dtype=float)
model = tf.keras.Sequential([
tf.keras.layers.Dense(units=4, input_shape=[1]),
tf.keras.layers.Dense(units=4),
tf.keras.layers.Dense(units=1)
])
model.compile(loss='mean_squared_error', optimizer=tf.keras.optimizers.Adam(0.1))
history = model.fit(multiplication_q, multiplication_a, epochs=750, verbose=False)
print(model.predict([4, 5]))
这是错误消息:
ValueError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:806 train_function *
return step_function(self, iterator)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:796 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
return fn(*args, **kwargs)
撒科打诨
慕的地8271018
相关分类