我的目标是理解 Trax 中变压器的介绍性示例,
import trax
# Create a Transformer model.
# Pre-trained model config in gs://trax-ml/models/translation/ende_wmt32k.gin
model = trax.models.Transformer(
input_vocab_size=33300,
d_model=512, d_ff=2048,
n_heads=8, n_encoder_layers=6, n_decoder_layers=6,
max_len=2048, mode='predict')
# Initialize using pre-trained weights.
model.init_from_file('gs://trax-ml/models/translation/ende_wmt32k.pkl.gz',
weights_only=True)
# Tokenize a sentence.
sentence = 'It is nice to learn new things today!'
tokenized = list(trax.data.tokenize(iter([sentence]), # Operates on streams.
vocab_dir='gs://trax-ml/vocabs/',
vocab_file='ende_32k.subword'))[0]
# Decode from the Transformer.
tokenized = tokenized[None, :] # Add batch dimension.
tokenized_translation = trax.supervised.decoding.autoregressive_sample(
model, tokenized, temperature=0.0) # Higher temperature: more diverse results.
# De-tokenize,
tokenized_translation = tokenized_translation[0][:-1] # Remove batch and EOS.
translation = trax.data.detokenize(tokenized_translation,
vocab_dir='gs://trax-ml/vocabs/',
vocab_file='ende_32k.subword')
print(translation)
这个例子工作得很好。但是,当我尝试使用初始化模型翻译另一个示例时,例如
sentence = 'I would like to try another example.'
tokenized = list(trax.data.tokenize(iter([sentence]),
vocab_dir='gs://trax-ml/vocabs/',
vocab_file='ende_32k.subword'))[0]
tokenized = tokenized[None, :]
!我在本地机器和 Google Colab 上都得到了输出。其他示例也会发生同样的情况。
当我构建并初始化一个新模型时,一切正常。
这是一个错误吗?如果不是,这里发生了什么,我怎样才能避免/修复这种行为?
Tokenization 和 detokenization 似乎运行良好,我对此进行了调试。. 中的事情似乎出了问题/出乎意料trax.supervised.decoding.autoregressive_sample。
猛跑小猪
相关分类