ValueError:检查输入时出错:预期 conv2d_1_input 有 4 个维度

我正在我的数据集上构建一个 2d 卷积网络。我在测试集上运行它,代码如下:


#reproducible code

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten

from keras.utils import np_utils

from keras import optimizers

from sklearn.metrics import confusion_matrix

import numpy as np

import time

from keras.layers.convolutional import Conv2D


data = np.random.rand(1000,22)

data.shape

train_X = data[0:data.shape[0],0:12]

train_X.shape

train_y = data[0:data.shape[0],12:data.shape[1]]

train_y.shape

train_X = train_X.reshape((train_X.shape[0], train_X.shape[1], 1))

train_X.shape

neurons = 10

model = Sequential()

model.add(Conv2D(filters=64,input_shape=train_X.shape, activation='relu',kernel_size = 3))

model.add(Flatten())

model.add(Dense(neurons,activation='relu')) # first hidden layer

model.add(Dense(neurons, activation='relu')) # second hidden layer

model.add(Dense(neurons, activation='relu')) # third hidden layer

model.add(Dense(10, activation='softmax'))

sgd = optimizers.SGD(lr=0.05, decay=1e-6, momentum=0.95, nesterov=True)

model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

model.summary()

model.fit(train_X,train_y, validation_split=0.2, epochs=10, batch_size=100, verbose=0)

model.summary()


蝴蝶刀刀
浏览 139回答 2
2回答

心有法竹

你没有理由使用 2D 卷积层,因为你的数据是 3D 的。您正在寻找的是 Conv1D。另外,不要n_samples在input_shape.from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Dense, Conv1D, Flattenfrom tensorflow.keras import optimizersimport numpy as npdata = np.random.rand(1000,22)train_X = data[0:data.shape[0],0:12]train_X = train_X.reshape((train_X.shape[0], train_X.shape[1], 1))train_y = data[0:data.shape[0],12:data.shape[1]]neurons = 10model = Sequential()model.add(Conv1D(filters=64,input_shape=train_X.shape[1:],     activation='relu',kernel_size = 3))model.add(Flatten())model.add(Dense(neurons,activation='relu')) # first hidden layermodel.add(Dense(10, activation='softmax'))sgd = optimizers.SGD(lr=0.05, decay=1e-6, momentum=0.95, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])history = model.fit(train_X, train_y, validation_split=0.2, epochs=1, batch_size=100)Train on 800 samples, validate on 200 samples100/800 [==>...........................] - ETA: 2s - loss: 11.4786 - acc: 0.0800800/800 [==============================] - 0s 547us/sample - loss: 55.3883 - acc: 0.1000 

HUX布斯

你需要train_X有第四维度。就像错误信息所说的那样。train_X = train_X.reshape(train_X.shape[0], train_X.shape[1], 1, 1)
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python