我正在我的数据集上构建一个 2d 卷积网络。我在测试集上运行它,代码如下:
#reproducible code
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.utils import np_utils
from keras import optimizers
from sklearn.metrics import confusion_matrix
import numpy as np
import time
from keras.layers.convolutional import Conv2D
data = np.random.rand(1000,22)
data.shape
train_X = data[0:data.shape[0],0:12]
train_X.shape
train_y = data[0:data.shape[0],12:data.shape[1]]
train_y.shape
train_X = train_X.reshape((train_X.shape[0], train_X.shape[1], 1))
train_X.shape
neurons = 10
model = Sequential()
model.add(Conv2D(filters=64,input_shape=train_X.shape, activation='relu',kernel_size = 3))
model.add(Flatten())
model.add(Dense(neurons,activation='relu')) # first hidden layer
model.add(Dense(neurons, activation='relu')) # second hidden layer
model.add(Dense(neurons, activation='relu')) # third hidden layer
model.add(Dense(10, activation='softmax'))
sgd = optimizers.SGD(lr=0.05, decay=1e-6, momentum=0.95, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
model.summary()
model.fit(train_X,train_y, validation_split=0.2, epochs=10, batch_size=100, verbose=0)
model.summary()
心有法竹
HUX布斯
相关分类