使用此处pandas
找到的文档中的示例,以下索引完美运行,结果为:pd.Series
import pandas as pd
tuples = [(1, 'red'), (1, 'blue'),
(2, 'red'), (2, 'blue')]
columns = pd.MultiIndex.from_tuples(tuples, names=('number', 'color'))
asdf = pd.DataFrame(columns=columns, index=[0, 1])
asdf.loc[:, (1, 'red')]
但是如果我稍微改变一下代码,去掉一层,同样的索引就不起作用了:
import pandas as pd
tuples = [(1,), (2,)]
columns = pd.MultiIndex.from_tuples(tuples, names=['number'])
asdf = pd.DataFrame(columns=columns, index=[0, 1])
asdf.loc[:, (1,)]
IndexError Traceback (most recent call last)
<ipython-input-43-d55399a979fa> in <module>
----> 1 asdf.loc[:, (1,)]
/opt/conda/lib/python3.8/site-packages/pandas/core/indexing.py in __getitem__(self, key)
1760 except (KeyError, IndexError, AttributeError):
1761 pass
-> 1762 return self._getitem_tuple(key)
1763 else:
1764 # we by definition only have the 0th axis
/opt/conda/lib/python3.8/site-packages/pandas/core/indexing.py in _getitem_tuple(self, tup)
1270 def _getitem_tuple(self, tup: Tuple):
1271 try:
-> 1272 return self._getitem_lowerdim(tup)
1273 except IndexingError:
1274 pass
/opt/conda/lib/python3.8/site-packages/pandas/core/indexing.py in _getitem_lowerdim(self, tup)
1371 # we may have a nested tuples indexer here
1372 if self._is_nested_tuple_indexer(tup):
-> 1373 return self._getitem_nested_tuple(tup)
1374
1375 # we maybe be using a tuple to represent multiple dimensions here
IndexError: tuple index out of range
此外,将其索引为asdf.loc[:, 1]throws a TypeError,更进一步,将其索引为asdf.loc[:, ((1,),)]works ,但结果是 a pd.DataFrame,而不是pd.Series!
为什么会这样?非常感谢您!
PS:我有兴趣从这些问题中“抽象”我的代码(一个级别与一个级别中的多个级别pd.DataFrame.columns)。在我工作的公司中,有时我们会获得需要多个级别的客户数据,但有时只需要一个级别。
慕容708150
相关分类