如何使用 Python 在 Neo4j 中按权重在节点之间随机行走?

我使用以下代码在 Neo4j 中创建了节点,


from py2neo import Graph, Node, Relationship


g = Graph(password='neo4j')

tx = g.begin()


node1 = Node('Node', name='Node-1')

node2 = Node('Node', name='Node-2')

node3 = Node('Node', name='Node-3')

node4 = Node('Node', name='Node-4')

node5 = Node('Node', name='Node-5')

node6 = Node('Node', name='Node-6')

node7 = Node('Node', name='Node-7')


tx.create(node1)

tx.create(node2)

tx.create(node3)

tx.create(node4)

tx.create(node5)

tx.create(node6)

tx.create(node7)


rel12 = Relationship(node1, '0.2', node2, weight=0.2)

rel13 = Relationship(node1, '0.2', node3, weight=0.2)

rel14 = Relationship(node1, '0.6', node4, weight=0.6)

rel45 = Relationship(node4, '0.5', node5, weight=0.5)

rel46 = Relationship(node4, '0.3', node6, weight=0.3)

rel47 = Relationship(node4, '0.2', node7, weight=0.2)


tx.create(rel12)

tx.create(rel13)

tx.create(rel14)

tx.create(rel45)

tx.create(rel46)

tx.create(rel47)


tx.commit()

这是界面中的图形Neo4j

http://img2.mukewang.com/6425514c0001e2af06590503.jpg

我想按名称选择一个节点,然后随机走到另一个节点。但是随机选择应该是这样的,


import random


random.choices(['Node-2', 'Node-3', 'Node-4'], weights=(0.2, 0.2, 0.6))

我可以用下面的代码选择节点,但我不知道如何随机走到另一个节点。


from py2neo import Graph

from py2neo.matching import NodeMatcher


g = Graph(password='neo4j')

nodes = NodeMatcher(g)

node1 = nodes.match('Node', name='Node-1').first()

如果以node-1为起点,可以走的路,


Node-1 -> Node-2

Node-1 -> Node-3

Node-1 -> Node-4 -> Node-5

Node-1 -> Node-4 -> Node-6

Node-1 -> Node-4 -> Node-7

任何想法?提前致谢。


守着星空守着你
浏览 151回答 1
1回答

临摹微笑

Py2neo 支持进行 Cypher 查询,这里有一个很好的 hello-world 教程,介绍如何做到这一点。因此,我将提供一个带注释的 Cypher 查询,希望对您有用。但首先,请注意几点:您不应该为服务于相同目的的关系提供几乎无限数量的类型(如“0.2”、“0.5”等),因为当您想要按类型搜索特定关系时,这是非常无益的(这是其中之一你会想做的最常见的事情)并且会导致大量的关系类型。所以我在我的回答中假设利益关系实际上都有类型TO。我的查询使用一个临时Temp节点来存储查询的临时状态,因为它遍历随机路径中的关系。该Temp节点将在查询结束时被删除。查询如下:// Get the (assumed-unique) starting Node `n` MATCH (n:Node)WHERE n.name = 'Node-1'// Create (if necessary) the unique `Temp` node, and initialize// it with the native ID of the starting node and an empty `pathRels` listMERGE (temp:Temp)SET temp = {id: ID(n), pathRels: []}WITH temp// apoc.periodic.commit() repeatedly executes the query passed to it// until it returns 0 or NULL.// The query passed here iteratively extends the list of relationships// in `temp.pathRels`. In each iteration, if the current `temp.id`// node has any outgoing `TO` relationships, the query:// - appends to `temp.pathRels` a randomly-selected relationship, taking//   into account the relationship weights (which MUST sum to 1.0),// - sets `temp.id` to the ID of the end node of that selected relationship,// - and returns 1.// But if the current `temp.id` node has no outgoing `TO` relationships, then// the query returns 0.CALL apoc.periodic.commit(  "    MATCH (a:Node)    WHERE ID(a) = $temp.id    WITH a, [(a)-[rel:TO]->() | rel] AS rels    LIMIT 1 // apoc.periodic.commit requires a LIMIT clause. `LIMIT 1` should be harmless here.    CALL apoc.do.when(      SIZE(rels) > 0,      '       WITH temp, a, REDUCE(s={x: rand()}, r IN rels | CASE         WHEN s.x IS NULL THEN s         WHEN s.x < r.weight THEN {x: NULL, pathRel: r}         ELSE {x: s.x - r.weight} END       ).pathRel AS pathRel       SET temp.id = ID(ENDNODE(pathRel)), temp.pathRels = temp.pathRels + pathRel       RETURN 1 AS result      ',      '       RETURN 0 AS result      ',      {temp: $temp, a: a, rels: rels}    ) YIELD value    RETURN value.result  ",  {temp: temp}) YIELD batchErrors// Use the `temp.pathRels` list to generate the `weightedRandomPath`// (or you could just return `pathRels` as-is).// Then delete the `Temp` node, since it is no longer needed.// Finally, return `weightedRandomPath`, and also the `batchErrors` returned by// apoc.periodic.commit() (in case it had any errors). WITH temp, apoc.path.create(STARTNODE(temp.pathRels[0]), temp.pathRels) AS weightedRandomPath, batchErrorsDELETE tempRETURN weightedRandomPath, batchErrors
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python