世界您好!我们正在编写自己的 AI,并且努力创建正确的模型层。我们必须在我们的神经网络中输入的是一个list包含 nlists和 mtuples
e.x. list = numpy.array([ [[1,2,4],[5,6,8]] , [[5,6,0],[7,2,4]] ])
我们期望得到的结果是 0 或 1(相信我,这是有道理的)
这就是我们现在所拥有的:
tpl = 3 # because we have tuples
nl = 2 # number of lists we have
model = tf.keras.Sequential([
# this should be entry layer that understands our list
tf.keras.layers.Dense(nl * tpl , input_shape=(nl, tpl), activation='relu'),
#hidden layers..
tf.keras.layers.Dense(64, input_shape=(nl, tpl), activation='sigmoid'),
#our output layer with 2 nodes that one should contain 0, other 1, because we have 2 labels ( 0 and 1 )
tf.keras.layers.Dense(2, input_shape=(0, 1), activation='softmax')
])
但是我们得到以下错误:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
58 ctx.ensure_initialized()
59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
62 if name is not None:
InvalidArgumentError: Incompatible shapes: [56,2,2] vs. [56,1]
[[node huber_loss/Sub (defined at <ipython-input-25-08eb2e0b395e>:53) ]] [Op:__inference_train_function_45699]
Function call stack:
train_function
如果我们总结我们的模型,它会给出以下结构:
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 2, 6) 24
_________________________________________________________________
dense_2 (Dense) (None, 2, 64) 448
_________________________________________________________________
dense_3 (Dense) (None, 2, 2) 130
=================================================================
最后,
我们了解到,我们提供的数据与最后一层不兼容,那么我们如何将最后一层转换为 => shape (None, 2)或者解决此错误的正确方法是什么?
森林海
相关分类