郎朗坤
1 - 你将不得不对边界做出一些假设,如果它们存在 - 比如说它们不应该超过 20 像素或者说图像高度/宽度的 10%。查看您的数据,您将能够做出这个假设现在我们将从图像中分离出这 20 像素的边界区域,并只在其中工作。2 - 由于您的边框颜色不同,因此将图像转换为灰度。在灰度上工作将使生活变得轻松。如果你能把它关起来,那就更好了。import cv2
import numpy as np
img = cv2.imread('input.png', 0)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)3 - 由于您的图像边界可能会被符号部分打断 - 使用膨胀操作。如果存在统一边界或不存在边界 - 什么都不会发生。如果边界存在并被中断 - 扩张操作将使它统一。以大小为5的矩阵为核kernel = np.ones((5,5), np.uint8)
img_dilated = cv2.dilate(gray, kernel, iterations=1)您将需要尝试内核大小迭代次数膨胀后是否需要腐蚀操作。侵蚀与膨胀相反4 - 现在让我们使用拉普拉斯算子找出是否存在任何边界。拉普拉斯算子是图像二阶空间导数的二维各向同性度量。图像的拉普拉斯算子突出了快速强度变化的区域,因此经常用于边缘检测。laplacian = cv2.Laplacian(img_dilated,cv2.CV_64F)在你的图像的拉普拉斯算子中,你会看到两条线代替你的边界。注意 - 您不需要使用单独的水平和垂直 sobel 运算符。拉普拉斯算子同时处理水平和垂直。拉普拉斯算子是二阶导数,而索贝尔是一阶导数。5 - 现在您希望算法检测是否有任何双线。为此,我们使用霍夫变换。# This returns an array of r and theta values lines = cv2.HoughLines(edges,1,np.pi/180, 200) # The below for loop runs till r and theta values # are in the range of the 2d array for r,theta in lines[0]: # Stores the value of cos(theta) in a a = np.cos(theta) # Stores the value of sin(theta) in b b = np.sin(theta) 6 - 如果 Hough 变换检测到线条(检查上面的角度 theta 与具有一定公差的期望) - 这意味着你的边界存在。从图像中删除 20 像素的边框。注意- 这只是让您入门的伪代码。现实世界的问题需要大量的定制工作和实验。
慕莱坞森
我设法找到了一种对我有用的方法,尽管如果图像中有其他水平和垂直形状则它不起作用。我使用的想法是简单地从边框是水平和垂直形状的假设开始,并从这些仅存在于边框中的假设出发(意味着图像本身没有垂直或水平线,这是一种拉伸,但我的用例有那个假设)。这是我使用的代码:# extract horizontal and vertical linesonly_box = extract_all_squares(box, kernel_length=7)# build up a mask of the same size as the imagemask = np.zeros(box.shape, dtype='uint8')# get contours of horizontal and vetical linescontours, hierarchy = cv2.findContours(only_box, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)# draw contours on maskmask = cv2.drawContours(mask, contours, -1, (255, 255, 255), thickness=cv2.FILLED)# threhold mask and imageret, mask = cv2.threshold(mask, 20, 255, cv2.THRESH_BINARY)ret, box = cv2.threshold(box, 20, 255, cv2.THRESH_BINARY)# remove the bits we don't wantbox[mask == 0] = 255具有以下辅助功能def extract_all_squares(image, kernel_length): """ Binarizes image, keeping only vertical and horizontal lines hopefully, it'll help us detect squares Args: image: image (cropped around circonstances) kernel_length: length of kernel to use. Too long and you will catch everything, too short and you catch nothing Returns: image binarized and keeping only vertical and horizozntal lines """ # thresholds image : anything beneath a certain value is set to zero (thresh, img_bin) = cv2.threshold(image, 128, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) # A vertical kernel of (1 X kernel_length), which will detect all the verticle lines from the image. vertical_ksize = (1, kernel_length) # Morphological operation to detect vertical lines from an image verticle_lines_img = extract_lines(img_bin, vertical_ksize) # A horizontal kernel of (kernel_length X 1), which will help to detect all the horizontal line from the image. horizontal_ksize = (kernel_length, 1) # Morphological operation to detect horizontal lines from an image horizontal_lines_img = extract_lines(img_bin, horizontal_ksize) img_final_bin = add_lines_together(verticle_lines_img, horizontal_lines_img) return img_final_bindef extract_lines(image, ksize): """ extract lines (horizontal or vertical, depending on ksize) Args: image: binarized image ksize: size of kernel to use. Possible values : horizontal_ksize = (kernel_length, 1) vertical_ksize = (1, kernel_length) Returns: lines from image (vertical or horizontal, depending on ksize) """ kernel = cv2.getStructuringElement(cv2.MORPH_RECT, ksize) img_temp = cv2.erode(image, kernel, iterations=3) lines_img = cv2.dilate(img_temp, kernel, iterations=3) return lines_imgdef add_lines_together(verticle_lines_img, horizontal_lines_img, alpha=0.5, beta=0.5): """ extract lines (horizontal or vertical, depending on ksize) Args: verticle_lines_img: image with vertical lines horizontal_lines_img: image with horizontal lines alpha : weight of first image. Keep at 0.5 for balance beta : weight of second image. Keep at 0.5 for balance alpha and beta are weighting parameters, this will decide the quantity of an image to be added to make a new image Returns: image with an addition of both vertical and horizontal lines """ # This function helps to add two image with specific weight parameter to get a third image as summation of two image. img_final_bin = cv2.addWeighted(verticle_lines_img, alpha, horizontal_lines_img, beta, 0.0) # A kernel of (3 X 3) nes. kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) # erodes boundaries of features, gets rid of some noise img_final_bin = cv2.erode(~img_final_bin, kernel, iterations=2) # further kill noise by thresholding (thresh, img_final_bin) = cv2.threshold(img_final_bin, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) return img_final_bin