MMMHUHU
第一个循环解决方案是迭代每一行,通过 DataFrame 进行比较sum:df = df.apply(lambda x: df.ne(x).sum(axis=1), axis=1)print (df) A B CA 0 2 3B 2 0 4C 3 4 0或者为了提高性能,将 numpy 中的值与 3d 数组的广播进行比较,sum 和 last 使用 DataFrame 构造函数:a = df.to_numpy()out = pd.DataFrame((a != a[:, None]).sum(2), index=df.index, columns=df.index)print (out) A B CA 0 2 3B 2 0 4C 3 4 0np.random.seed(123)df = pd.DataFrame( np.random.randint(20, size=(100, 500)))print (df)In [119]: %%timeit ...: df.apply(lambda x: df.ne(x).sum(axis=1), axis=1) ...: ...: 12.8 s ± 1.02 s per loop (mean ± std. dev. of 7 runs, 1 loop each)In [120]: %%timeit ...: a = df.to_numpy() ...: pd.DataFrame((a != a[:, None]).sum(2), index=df.index, columns=df.index) ...: ...: 14.6 ms ± 325 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)