使用 skyfield 的脚本的无效结果

我正在探索 Brandon Rhodes 开发的出色软件 Skyfield 的可能性。我制作了一个脚本来计算随机对象之间的 Right Ascension 连词。我使用以下脚本:


from skyfield import almanac

from skyfield.searchlib import find_maxima, find_minima, find_discrete

from skyfield.api import Star, load

from datetime import datetime, date,timedelta

import pytz


planets = load('de430t.bsp')

earth = planets['earth']


x = [

['Aldebaran',[4, 35, 55.2],[16, 30, 33]],

['Regulus',[10, 8, 22.3],[11, 58, 2]],

['Pollux',[7, 45, 18.9],[28, 1, 34]],

['Antares',[16, 29, 24.4],[-26, 25, 55]],

]


ts = load.timescale(builtin=True)

t = ts.now()

tzn = 'Europe/Amsterdam'


tz = pytz.timezone(tzn)

now = datetime(2020, 1, 1, 0, 0, 0)

t0 = ts.utc(tz.localize(now))

t1 = ts.utc(tz.localize(now) + timedelta(days=+365))


def difference(t):

    e = earth.at(t)

    ra11, dec11, distance = e.observe(object).radec()

    ra12, dec12, distance2 = e.observe(planets[target1]).radec()

    diff = ra11.hours - ra12.hours

    return diff >= 0


difference.rough_period = 1.0


for count in range (len(x)):

    object = Star(ra_hours=(x[count][1][0], x[count][1][1], x[count][1][2]),dec_degrees=(x[count][2][0], x[count][2][1], x[count][2][2]))

    target1 = 'venus'


    t, b = find_discrete(t0, t1, difference)

    if len(t) > 0:

        print (f"{x[count][0]} and {target1}")


        for i, (a, b) in enumerate(zip(t, b)):

            e = earth.at(a)

            ra11, dec11, distance = e.observe(object).radec('date')

            ra12, dec12, distance2 = e.observe(planets[target1]).radec('date')

            print (f"Diff: {ra11.hours - ra12.hours}, ra_{x[count][0]}: {ra11.hours}, ra_{target1}: {ra12.hours}")

            print(f"{a.utc_iso()},{dec11._degrees - dec12._degrees}")

            print ("")

我相信这是在计算两个对象具有相同 RA 的时间实例。

以“Diff”开头的行是监视输出有效性的行。Diff 代表计算出的 RA 差异。它应该接近于零。其他两个值是两个对象的赤经。它们应该非常相似。第二行是我想要的结果,它是计算的时间和对象之间的度数距离。正如您所看到的,出于某种原因,对于每组对象,我得到了时间实例的无效结果:2020-02-07T21:20:06Z,并且该实例的差值肯定不接近于零。如果我将对象 venus 更改为 moon 它会变得更糟,因为每秒结果都是无效的。我根据 Skychart / Cartes du Ciel 软件和那些结帐检查了其他结果。

我不知道这里出了什么问题。有人能帮助我吗?


慕容森
浏览 130回答 1
1回答

紫衣仙女

好问题!我应该在https://rhodesmill.org/skyfield/searches.html添加一个新部分来解释减去两个经度或赤经时看到的这种常见行为。解开这个谜团的关键是观察角度差在输出中作为幻影合相出现的某一时刻发生了什么。我附上了一个脚本,它会为您在金星和毕宿五之间打印的第一个事件打印此内容:2020-02-07 Difference: -19.33880215224481 Venus RA: 23.93746881891146 2020-02-08 Difference: 4.5908654129343995 Venus RA: 0.007801253732248779角度差在 -19.3 和 4.6 之间跳跃,这应该会立即引起我们的怀疑,因为它们只是完全相同角度的两个不同名称!您可以通过将 24.0 加到 -19.3 来确认这一点,您将得出一个非常接近 4.6 的角度(给出或考虑金星在一天内完成的实际运动)。为什么结果会在天空中完全相同的角度差异的两个别名之间跳跃?答案在上面打印的第二个事实中:金星的 RA。不连续恰好发生在金星恰好穿过 0h 赤经的那一刻!尽管 23.93746881891146 和 0.007801253732248779 几乎是相同的角度,但它们相差 24.0,因为它们横跨天空中我们重新命名赤经的位置。我下面的脚本还显示了一个说明情况的情节:您可以在顶部图中看到,正是在金星将其 RA 重置为零的确切时刻,RA 差异在相同的四个半小时内从一个别名跳到另一个别名 24.0 小时RA 的差异。解决方案?角度差异需要限制在 [-12h, +12h) 之类的范围内,以强制为每个可能的角度值选择一个首选别名。在 Python 中,正如您在下面的脚本中所见,典型的操作是:(ra1.hours - ra2.hours + 12.0) % 24.0 - 12.0这在上面的第二个图中显示为“改进的差异”,它不仅正确地隐藏了 2 月 7 日的不连续性,不再让它看起来像一个事件,而且现在它在接近尾声时正确地识别了金星和毕宿五之间的对冲2020 年(在图的右边缘)之前仅显示为超过 -12.0 的差异,但现在作为角度差异的关键时刻闪耀。最后,此脚本会检查反对意见并将其从搜索结果中过滤掉。您还会发现一些可能的 Python 代码调整,您可能会在继续使用 Python 编码时考虑这些调整。开始:from skyfield.searchlib import find_maxima, find_minima, find_discretefrom skyfield.api import Star, loadfrom datetime import datetime, date,timedeltaimport pytzplanets = load('de430t.bsp')earth = planets['earth']stars = [    ['Aldebaran', (4, 35, 55.2), (16, 30, 33)],    ['Regulus', (10, 8, 22.3), (11, 58, 2)],    ['Pollux', (7, 45, 18.9), (28, 1, 34)],    ['Antares', (16, 29, 24.4), (-26, 25, 55)],]ts = load.timescale(builtin=True)t0 = ts.utc(2020, 1, 1)t1 = ts.utc(2021, 1, 1)# Exploring the first bad result for Venus and Aldebaran.star = Star(ra_hours=stars[0][1], dec_degrees=stars[0][2])for utc in (2020, 2, 7), (2020, 2, 8):    t = ts.utc(*utc)    ra1, _, _ = planets['earth'].at(t).observe(star).radec()    ra2, _, _ = planets['earth'].at(t).observe(planets['venus']).radec()    print(t.utc_strftime('%Y-%m-%d'),          'Difference:', ra1.hours - ra2.hours,          'Venus RA:', ra2.hours)# Plot showing how to protect an angular difference against discontinuity.import matplotlib.pyplot as pltt = ts.utc(2020, 1, range(365))e = planets['earth'].at(t)star = Star(ra_hours=stars[0][1], dec_degrees=stars[0][2])ra1, _, _, = e.observe(star).radec()ra2, _, _, = e.observe(planets['venus']).radec()fig, (ax, ax2) = plt.subplots(2, 1)ax.plot(t.J, ra2.hours, label='Venus RA')ax.plot(t.J, ra1.hours - ra2.hours, label='RA difference')ax.set(xlabel='Year', ylabel='Hours')ax.grid()ax.legend()ax2.plot(t.J, ra2.hours, label='Venus RA')ax2.plot(t.J, (ra1.hours - ra2.hours + 12.0) % 24.0 - 12.0,         label='Improved difference')ax2.set(xlabel='Year', ylabel='Hours')ax2.grid()ax2.legend()fig.savefig('tmp.png')# So we need to force the difference into the range [-12 hours .. +12 hours]def difference(t):    e = earth.at(t)    ra11, dec11, distance = e.observe(object).radec()    ra12, dec12, distance2 = e.observe(planets[target1]).radec()    diff = (ra11.hours - ra12.hours + 12.0) % 24.0 - 12.0    return diff >= 0difference.rough_period = 1.0for name, ra_hms, dec_dms in stars:    object = Star(ra_hours=ra_hms, dec_degrees=dec_dms)    target1 = 'venus'    t, b = find_discrete(t0, t1, difference)    if len(t) == 0:        break    print (f"{name} and {target1}")    for a, b in zip(t, b):        e = earth.at(a)        ra1, dec1, _ = e.observe(object).radec('date')        ra2, dec2, _ = e.observe(planets[target1]).radec('date')        if abs(ra1.hours - ra2.hours) > 6.0:            continue  # ignore oppositions        print(f"Diff: {ra1.hours - ra2.hours:.4f}, ra_{name}: {ra1.hours}, ra_{target1}: {ra2.hours}")        print(f"{a.utc_iso()},{dec1._degrees - dec2._degrees}")        print()现在打印的事件是:Aldebaran and venusDiff: -0.0014, ra_Aldebaran: 4.617748605529591, ra_venus: 4.6191691213206812020-04-17T20:25:49Z,-10.136618155920797Diff: -0.0007, ra_Aldebaran: 4.617892691238804, ra_venus: 4.6185627842942692020-06-08T07:56:08Z,-4.921187477025711Diff: -0.0001, ra_Aldebaran: 4.618000948409604, ra_venus: 4.6181296233024642020-07-12T06:44:16Z,-0.9622868107603999Regulus and venusDiff: 0.0000, ra_Regulus: 10.157702949500333, ra_venus: 10.1576970966075532020-10-02T23:42:45Z,0.09034295610918264Pollux and venusDiff: 0.0012, ra_Pollux: 7.776229220287636, ra_venus: 7.7750029952187322020-09-01T16:39:22Z,8.68200041253418Antares and venusDiff: 0.0008, ra_Antares: 16.511260401870718, ra_venus: 16.510428388021812020-12-23T00:34:39Z,-5.652225570418828我相信这可以解决并纠正您的问题!
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python