我想使用MultiOutputRegressorscikit-learn 在多输出回归问题上训练 XGB。但是我不能将fit_params字典传递给 a 的.fit方法MultiOutputRegressor。貌似不认识里面的参数。。。
我收到此错误:
from sklearn.multioutput import MultiOutputRegressor
from xgboost.sklearn import XGBRegressor
XGB = XGBRegressor(n_jobs=1, max_depth=10, n_estimators=100, learning_rate=0.2)
fit_params = {'early_stopping_rounds':5,
'eval_set':[(X_holdout,Y_holdout)],
'eval_metric':'mae',
'verbose':False}
multi = MultiOutputRegressor(XGB, n_jobs=-1)
multi.fit(X_train,Y_train,**fit_params)
Traceback (most recent call last):
File "<ipython-input-16-e245db56e1be>", line 9, in <module>
multi.fit(X_train,Y_train,**fit_params)
TypeError: fit() got an unexpected keyword argument 'early_stopping_rounds'
奇怪的是它与RandomizedSearchCV
from sklearn.model_selection import RandomizedSearchCV
XGB_cv = RandomizedSearchCV(XGB, params, cv=5, n_jobs=-1, verbose=1, n_iter=1000, scoring='neg_mean_absolute_error')
XGB_cv.fit(X_train, Y_train,**fit_params)
呼如林
慕妹3146593
随时随地看视频慕课网APP
相关分类