Beta 是衡量投资组合系统性风险的指标。它的计算方法是将投资组合回报率与基准/市场的协方差除以市场方差。我想根据许多投资组合滚动计算。
我有一个 df 如下
PERIOD,PORT1,PORT2,BM
201504,-0.004,-0.001,-0.013
201505,0.017,0.019,0.022
201506,-0.027,-0.037,-0.039
201507,0.026,0.033,0.017
201508,-0.045,-0.054,-0.081
201509,-0.033,-0.026,-0.032
201510,0.053,0.07,0.09
201511,0.03,0.032,0.038
201512,-0.05,-0.034,-0.044
201601,-0.016,-0.043,-0.057
201602,-0.007,-0.007,-0.011
201603,0.014,0.014,0.026
201604,0.003,0.001,0.01
201605,0.046,0.038,0.031
除了更多列,如 port1 和 port2。
我想创建一个与 BM 列相比具有滚动 beta 的数据集。
我创建了一个类似的滚动相关数据集
df.rolling(3).corr(df['BM'])
...它获取了我的大集合中的每一列,并计算了与我的 BM 列的相关性。
我试图为 Beta 制作一个自定义函数,但因为它需要两个参数,所以我很挣扎。下面是我的自定义函数,以及我是如何通过向它提供两列返回值来让它工作的。
def beta(arr1,arr2):
#ddof = 0 gives population covar. the 0 and 1 coordinates take the arr1 vs arr2 covar from the matrix
return (np.cov(arr1,arr2,ddof=0)[0][1])/np.var(arr2)
beta_test = beta(df['PORT1'],df['BM'])
所以这有助于我找到我输入的两列之间的 beta...问题是如何对我上面的数据和包含许多列/投资组合的数据执行此操作?然后如何在滚动的基础上做到这一点?从我上面看到的相关性来看,下面应该是可能的,在每一列与一个指定列中运行每个滚动的 3 个月数据集。
beta_data = df.rolling(3).agg(beta(df['BM']))
任何指向正确方向的指针将不胜感激
拉莫斯之舞
胡子哥哥
相关分类