Qyouu
以下代码导致 N = 14 的 6 种可能性,而不是发布的 4。代码from itertools import chain, combinationsfrom pprint import pprint# flatten and powerset from# https://docs.python.org/3/library/itertools.html#itertools-recipesdef flatten(list_of_lists): "Flatten one level of nesting" return chain.from_iterable(list_of_lists)def powerset(iterable): "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)" s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))def solve(n): " Get all possible permutations of list of perfect squares formed by breaking a number " squares = (i*i for i in range(1, int(b**0.5)+1)) # squares that can be used multiples = ([i]*int(b//i) for i in squares) # repetition of squares that can be used numbers = flatten(multiples) # flatten to single list # Compute set of powerset, and take results which sum to b return [x for x in set(powerset(numbers)) if sum(x) == b] 测试b = int(input('input number: ')) # Enter 14result = solve(b)pprint(result)输出input number: 14[(1, 1, 1, 1, 1, 1, 4, 4), (1, 1, 1, 1, 1, 9), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (1, 4, 9), (1, 1, 4, 4, 4)]限制最大长度def solve_maxlen(n, maxlen): " Get all possible permutations of list of perfect squares formed by breaking a number " squares = (i*i for i in range(1, int(b**0.5)+1)) # squares that can be used multiples = ([i]*int(b//i) for i in squares) # repetition of squares that can be used numbers = flatten(multiples) # flatten to single list # Compute set of powerset, and take results which sum to b return [x for x in set(powerset(numbers)) if sum(x) == b and len(x) <= maxlen] pprint(solve_maxlen(14, 6))输出[(1, 1, 1, 1, 1, 9), (1, 4, 9), (1, 1, 4, 4, 4)]
慕尼黑5688855
import itertoolsup_to = int(input())def is_perfect_square(number): squared = pow(number, 0.5) return int(squared) == squaredperfect_squares = filter(is_perfect_square, range(1, up_to))permutations = list(itertools.permutations(perfect_squares))print(permutations)输出是:[(1, 4, 9), (1, 9, 4), (4, 1, 9), (4, 9, 1), (9, 1, 4), (9, 4, 1)]