根据类别分布在训练和测试之间划分数据集

我想在具有以下分布的给定数据集中运行 10 次机器学习算法


np.unique(x[:,24], return_counts=True)

(array([1., 2.]), array([700, 300]))

这意味着我 70% 的数据来自第 1 类,30% 来自第 2 类。


下面是我的数据的快照。最后一列通知类标签(1 或 2):


1,6,4,12,5,5,3,4,1,67,3,2,1,2,1,0,0,1,0,0,1,0,0,1,1

2,48,2,60,1,3,2,2,1,22,3,1,1,1,1,0,0,1,0,0,1,0,0,1,2

4,12,4,21,1,4,3,3,1,49,3,1,2,1,1,0,0,1,0,0,1,0,1,0,1

1,42,2,79,1,4,3,4,2,45,3,1,2,1,1,0,0,0,0,0,0,0,0,1,1

1,24,3,49,1,3,3,4,4,53,3,2,2,1,1,1,0,1,0,0,0,0,0,1,2

4,36,2,91,5,3,3,4,4,35,3,1,2,2,1,0,0,1,0,0,0,0,1,0,1

4,24,2,28,3,5,3,4,2,53,3,1,1,1,1,0,0,1,0,0,1,0,0,1,1

2,36,2,69,1,3,3,2,3,35,3,1,1,2,1,0,1,1,0,1,0,0,0,0,1

4,12,2,31,4,4,1,4,1,61,3,1,1,1,1,0,0,1,0,0,1,0,1,0,1

2,30,4,52,1,1,4,2,3,28,3,2,1,1,1,1,0,1,0,0,1,0,0,0,2

2,12,2,13,1,2,2,1,3,25,3,1,1,1,1,1,0,1,0,1,0,0,0,1,2

1,48,2,43,1,2,2,4,2,24,3,1,1,1,1,0,0,1,0,1,0,0,0,1,2

2,12,2,16,1,3,2,1,3,22,3,1,1,2,1,0,0,1,0,0,1,0,0,1,1

1,24,4,12,1,5,3,4,3,60,3,2,1,1,1,1,0,1,0,0,1,0,1,0,2

1,15,2,14,1,3,2,4,3,28,3,1,1,1,1,1,0,1,0,1,0,0,0,1,1

1,24,2,13,2,3,2,2,3,32,3,1,1,1,1,0,0,1,0,0,1,0,1,0,2

4,24,4,24,5,5,3,4,2,53,3,2,1,1,1,0,0,1,0,0,1,0,0,1,1

1,30,0,81,5,2,3,3,3,25,1,3,1,1,1,0,0,1,0,0,1,0,0,1,1

2,24,2,126,1,5,2,2,4,44,3,1,1,2,1,0,1,1,0,0,0,0,0,0,2

4,24,2,34,3,5,3,2,3,31,3,1,2,2,1,0,0,1,0,0,1,0,0,1,1

4,9,4,21,1,3,3,4,3,48,3,3,1,2,1,1,0,1,0,0,1,0,0,1,1

1,6,2,26,3,3,3,3,1,44,3,1,2,1,1,0,0,1,0,1,0,0,0,1,1

1,10,4,22,1,2,3,3,1,48,3,2,2,1,2,1,0,1,0,1,0,0,1,0,1

2,12,4,18,2,2,3,4,2,44,3,1,1,1,1,0,1,1,0,0,1,0,0,1,1

4,10,4,21,5,3,4,1,3,26,3,2,1,1,2,0,0,1,0,0,1,0,0,1,1

1,6,2,14,1,3,3,2,1,36,1,1,1,2,1,0,0,1,0,0,1,0,1,0,1

4,6,0,4,1,5,4,4,3,39,3,1,1,1,1,0,0,1,0,0,1,0,1,0,1

3,12,1,4,4,3,2,3,1,42,3,2,1,1,1,0,0,1,0,1,0,0,0,1,1

2,7,2,24,1,3,3,2,1,34,3,1,1,1,1,0,0,0,0,0,1,0,0,1,1

1,60,3,68,1,5,3,4,4,63,3,2,1,2,1,0,0,1,0,0,1,0,0,1,2

2,18,2,19,4,2,4,3,1,36,1,1,1,2,1,0,0,1,0,0,1,0,0,1,1

1,24,2,40,1,3,3,2,3,27,2,1,1,1,1,0,0,1,0,0,1,0,0,1,1


完整的数据集可以在这里找到

我想将数据分成 90% 用于训练和 10% 用于测试。但是,对于每个拆分,我必须保持数据的比例(例如,在训练和验证拆分中,70% 的数据必须属于 1 类,30% 属于 2 类)


我知道如何简单地将数据划分为训练和测试,但我不知道如何使这种划分服从我上面引用的类分布。如何在 Python 中做到这一点?


holdtom
浏览 106回答 2
2回答

慕码人8056858

您可以使用RepeatedStratifiedKFold,顾名思义,重复 K 折交叉验证器n时间。要重复处理10时间,设置,并在/大小中具有大约 n_repeats的比例,我们可以设置:9:1traintestn_splits=10from sklearn.model_selection import RepeatedStratifiedKFoldX = a[:,:-1]y = a[:,-1]rskf = RepeatedStratifiedKFold(n_splits=10, n_repeats=10, random_state=2)for train_index, test_index in rskf.split(X, y):    X_train, X_test = X[train_index], X[test_index]    y_train, y_test = y[train_index], y[test_index]    print(f'\nClass 1: {((y_train==1).sum()/len(y_train))*100:.0f}%')     print(f'\nShape of train: {X_train.shape[0]}')    print(f'Shape of test: {X_test.shape[0]}')Class 1: 73%Shape of train: 33Shape of test: 4Class 1: 73%Shape of train: 33Shape of test: 4Class 1: 73%Shape of train: 33Shape of test: 4Class 1: 73%Shape of train: 33Shape of test: 4...

精慕HU

将数据拆分为训练和测试的一种众所周知的方法是 scikit-learn train_test_split。model_selection.train_test_split的 API 文档。X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.10, random_state=42)您可以使用random_state变量(种子),直到您的类之间的比例正确。虽然train_test_split不会强制执行比例,但它通常遵循人口比例。
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python