我想在具有以下分布的给定数据集中运行 10 次机器学习算法
np.unique(x[:,24], return_counts=True)
(array([1., 2.]), array([700, 300]))
这意味着我 70% 的数据来自第 1 类,30% 来自第 2 类。
下面是我的数据的快照。最后一列通知类标签(1 或 2):
1,6,4,12,5,5,3,4,1,67,3,2,1,2,1,0,0,1,0,0,1,0,0,1,1
2,48,2,60,1,3,2,2,1,22,3,1,1,1,1,0,0,1,0,0,1,0,0,1,2
4,12,4,21,1,4,3,3,1,49,3,1,2,1,1,0,0,1,0,0,1,0,1,0,1
1,42,2,79,1,4,3,4,2,45,3,1,2,1,1,0,0,0,0,0,0,0,0,1,1
1,24,3,49,1,3,3,4,4,53,3,2,2,1,1,1,0,1,0,0,0,0,0,1,2
4,36,2,91,5,3,3,4,4,35,3,1,2,2,1,0,0,1,0,0,0,0,1,0,1
4,24,2,28,3,5,3,4,2,53,3,1,1,1,1,0,0,1,0,0,1,0,0,1,1
2,36,2,69,1,3,3,2,3,35,3,1,1,2,1,0,1,1,0,1,0,0,0,0,1
4,12,2,31,4,4,1,4,1,61,3,1,1,1,1,0,0,1,0,0,1,0,1,0,1
2,30,4,52,1,1,4,2,3,28,3,2,1,1,1,1,0,1,0,0,1,0,0,0,2
2,12,2,13,1,2,2,1,3,25,3,1,1,1,1,1,0,1,0,1,0,0,0,1,2
1,48,2,43,1,2,2,4,2,24,3,1,1,1,1,0,0,1,0,1,0,0,0,1,2
2,12,2,16,1,3,2,1,3,22,3,1,1,2,1,0,0,1,0,0,1,0,0,1,1
1,24,4,12,1,5,3,4,3,60,3,2,1,1,1,1,0,1,0,0,1,0,1,0,2
1,15,2,14,1,3,2,4,3,28,3,1,1,1,1,1,0,1,0,1,0,0,0,1,1
1,24,2,13,2,3,2,2,3,32,3,1,1,1,1,0,0,1,0,0,1,0,1,0,2
4,24,4,24,5,5,3,4,2,53,3,2,1,1,1,0,0,1,0,0,1,0,0,1,1
1,30,0,81,5,2,3,3,3,25,1,3,1,1,1,0,0,1,0,0,1,0,0,1,1
2,24,2,126,1,5,2,2,4,44,3,1,1,2,1,0,1,1,0,0,0,0,0,0,2
4,24,2,34,3,5,3,2,3,31,3,1,2,2,1,0,0,1,0,0,1,0,0,1,1
4,9,4,21,1,3,3,4,3,48,3,3,1,2,1,1,0,1,0,0,1,0,0,1,1
1,6,2,26,3,3,3,3,1,44,3,1,2,1,1,0,0,1,0,1,0,0,0,1,1
1,10,4,22,1,2,3,3,1,48,3,2,2,1,2,1,0,1,0,1,0,0,1,0,1
2,12,4,18,2,2,3,4,2,44,3,1,1,1,1,0,1,1,0,0,1,0,0,1,1
4,10,4,21,5,3,4,1,3,26,3,2,1,1,2,0,0,1,0,0,1,0,0,1,1
1,6,2,14,1,3,3,2,1,36,1,1,1,2,1,0,0,1,0,0,1,0,1,0,1
4,6,0,4,1,5,4,4,3,39,3,1,1,1,1,0,0,1,0,0,1,0,1,0,1
3,12,1,4,4,3,2,3,1,42,3,2,1,1,1,0,0,1,0,1,0,0,0,1,1
2,7,2,24,1,3,3,2,1,34,3,1,1,1,1,0,0,0,0,0,1,0,0,1,1
1,60,3,68,1,5,3,4,4,63,3,2,1,2,1,0,0,1,0,0,1,0,0,1,2
2,18,2,19,4,2,4,3,1,36,1,1,1,2,1,0,0,1,0,0,1,0,0,1,1
1,24,2,40,1,3,3,2,3,27,2,1,1,1,1,0,0,1,0,0,1,0,0,1,1
完整的数据集可以在这里找到
我想将数据分成 90% 用于训练和 10% 用于测试。但是,对于每个拆分,我必须保持数据的比例(例如,在训练和验证拆分中,70% 的数据必须属于 1 类,30% 属于 2 类)
我知道如何简单地将数据划分为训练和测试,但我不知道如何使这种划分服从我上面引用的类分布。如何在 Python 中做到这一点?
慕码人8056858
精慕HU
相关分类