-
素胚勾勒不出你
谢谢大家!看着答案,我想我可以得出结论,我需要自己动手。我会用你的意见作为灵感。再次感谢 !
-
呼唤远方
这是代码:l = [0, 0, 0, 1, 2, 2, 2, 2, 0, 0]for (i, ll) in enumerate(l): if i != 0 and ll == l[i-1] and i<len(l)-1 and ll == l[i+1]: continue print(i+1, ll)它产生你想要的东西。您没有指定输入数据的格式,所以我假设它们在列表中。条件ll == l[i-1]和ll == l[i+1]是跳过重复值的关键。
-
慕无忌1623718
没有快速的函数调用来做你需要的。以下是一种方式import pandas as pddf = pd.DataFrame({'interval':[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'value':[0, 0, 0, 1, 2, 2, 2, 2, 0, 0]}) # example dataframedf['group'] = df['value'].ne(df['value'].shift()).cumsum() # column that increments every time the value changesdf['key'] = 1 # create column of onesdf['key'] = df.groupby('group')['key'].transform('cumsum') # get the cumulative sum df['key'] = df.groupby('group')['key'].transform(lambda x: x.isin( [x.min(), x.max()])) # check which key is minimum and which is maximum by groupdf = df[df['key']==True].drop(columns=['group', 'key']) # keep only relevant casesdf
-
拉风的咖菲猫
您可以对数据框使用 pandas 查询来实现此目的:import pandas as pdmatrix = [[1,0, 0],[2, 0, 0],[3, 0, 0],[4, 1, 1],[5, 2, 2],[6, 2, 0],[7, 2, 0],[8, 2, 2],[9, 0, 0],[10,0, 0]]df = pd.DataFrame(matrix, columns=list('abc'))print(df.query("c != 0"))