Pandas merge_asof:不兼容的合并键 [datetime64

我有两个由某人创建的数据框,我需要在和上进行merge_asof。左数据框是这样创建的:datetimeid

import pandas as pd

import pytz

from datetime import datetime

from datetime import timezone


dates = [datetime(2020, 1, 2, 8, 0, 0, 824000),

         datetime(2020, 1, 8, 6, 2, 52, 833000),

         datetime(2020, 1, 9, 22, 41, 18, 858000),

         datetime(2020, 1, 16, 8, 0, 1, 404000),

         datetime(2020, 1, 22, 8, 0, 1, 560000),

         datetime(2020, 1, 23, 8, 0, 1, 493000)

        ]

timezone = pytz.timezone('US/Eastern')

dates_localized = [timezone.localize(d) for d in dates ]

ids = [1,1,1,2,2,2]

headlines = ['abc','def','jkl', 'mno','pqr', 'stx']

left = pd.DataFrame({'date':dates_localized, 'id':ids, 'headlines':headlines})

print(left)


                              date  id headlines

0 2020-01-02 08:00:00.824000-05:00   1       abc

1 2020-01-08 06:02:52.833000-05:00   1       def

2 2020-01-09 22:41:18.858000-05:00   1       jkl

3 2020-01-16 08:00:01.404000-05:00   2       mno

4 2020-01-22 08:00:01.560000-05:00   2       pqr

5 2020-01-23 08:00:01.493000-05:00   2       stx

右数据框的创建类似于:


index = pd.DatetimeIndex(['2020-01-02 07:30:00.070041845',

               '2020-01-08 05:30:00.167110660',

               '2020-01-09 09:30:00.185073458',

               '2020-01-16 09:30:00.190448059',

               '2020-01-22 07:30:00.286648287',

               '2020-01-22 06:30:00.376308078'])


right = pd.DataFrame({'id':[1,1,1,2,2,2], 'value':[1,0,0,1,1,0]})

right = right.set_index(index)

right.index.name = 'date'

print(right)


                               id  value

date                                    

2020-01-02 07:30:00.070041845   1      1

2020-01-08 05:30:00.167110660   1      0

2020-01-09 09:30:00.185073458   1      0

2020-01-16 09:30:00.190448059   2      1

2020-01-22 07:30:00.286648287   2      1

2020-01-22 06:30:00.376308078   2      0

合并:


df = pd.merge_asof(left, right, on='date', by='id')

导致错误:


MergeError: incompatible merge keys [1] datetime64[ns, US/Eastern] and dtype('<M8[ns]'), must be the same type

任何想法如何将时间转换为一种merge_asof可以完成的类型?


函数式编程
浏览 187回答 1
1回答

繁华开满天机

一个想法是DataFrame.tz_localize将时区设置为Datetimeindex:df = pd.merge_asof(left, right.tz_localize('US/Eastern').sort_index(), on='date', by='id')print (df)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; date&nbsp; id headlines&nbsp; value0 2020-01-02 08:00:00.824000-05:00&nbsp; &nbsp;1&nbsp; &nbsp; &nbsp; &nbsp;abc&nbsp; &nbsp; 1.01 2020-01-08 06:02:52.833000-05:00&nbsp; &nbsp;1&nbsp; &nbsp; &nbsp; &nbsp;def&nbsp; &nbsp; 0.02 2020-01-09 22:41:18.858000-05:00&nbsp; &nbsp;1&nbsp; &nbsp; &nbsp; &nbsp;jkl&nbsp; &nbsp; 0.03 2020-01-16 08:00:01.404000-05:00&nbsp; &nbsp;2&nbsp; &nbsp; &nbsp; &nbsp;mno&nbsp; &nbsp; NaN4 2020-01-22 08:00:01.560000-05:00&nbsp; &nbsp;2&nbsp; &nbsp; &nbsp; &nbsp;pqr&nbsp; &nbsp; 1.05 2020-01-23 08:00:01.493000-05:00&nbsp; &nbsp;2&nbsp; &nbsp; &nbsp; &nbsp;stx&nbsp; &nbsp; 1.0编辑:如有必要,将时区设置为date列:left['date'] = left['date'].dt.tz_localize('US/Eastern')df = pd.merge_asof(left, right.sort_index(), on='date', by='id')
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python