我有一个模型,我正在尝试使用它。我正在解决这些错误,但现在我认为它已经归结为我层中的值。我收到此错误:
RuntimeError: Given groups=1, weight of size 24 1 3 3, expected input[512, 50, 50, 3] to have 1 channels,
but got 50 channels instead
我的参数是:
LR = 5e-2
N_EPOCHS = 30
BATCH_SIZE = 512
DROPOUT = 0.5
我的图像信息是:
depth=24
channels=3
original height = 1600
original width = 1200
resized to 50x50
这是我的数据的大小:
Train shape (743, 50, 50, 3) (743, 7)
Test shape (186, 50, 50, 3) (186, 7)
Train pixels 0 255 188.12228712427097 61.49539262385051
Test pixels 0 255 189.35559211469533 60.688278787628775
我在这里试图了解每一层的期望值,但是当我在这里输入它所说的内容时,https://towardsdatascience.com/pytorch-layer-dimensions-what-sizes-should-they-be-and-为什么-4265a41e01fd,它给了我关于错误通道和内核的错误。
我发现 torch_summary 让我对输出有更多的了解,但它只会提出更多的问题。
这是我的 torch_summary 代码:
from torchvision import models
from torchsummary import summary
import torch
import torch.nn as nn
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1,24, kernel_size=5) # output (n_examples, 16, 26, 26)
self.convnorm1 = nn.BatchNorm2d(24) # channels from prev layer
self.pool1 = nn.MaxPool2d((2, 2)) # output (n_examples, 16, 13, 13)
self.conv2 = nn.Conv2d(24,48,kernel_size=5) # output (n_examples, 32, 11, 11)
self.convnorm2 = nn.BatchNorm2d(48) # 2*channels?
self.pool2 = nn.AvgPool2d((2, 2)) # output (n_examples, 32, 5, 5)
self.linear1 = nn.Linear(400,120) # input will be flattened to (n_examples, 32 * 5 * 5)
self.linear1_bn = nn.BatchNorm1d(400) # features?
self.drop = nn.Dropout(DROPOUT)
self.linear2 = nn.Linear(400, 10)
self.act = torch.relu
慕姐4208626
相关分类