将数据框列与列表值匹配,并附加数据框与匹配的行

我有两个不同的 csv,我在两个数据帧中读取。我想将列 df1['building_type] 与 df2['model'] 匹配,并将相应的行附加到 df1。


数据框 1:


data = [{'length': '34', 'width': '58.5', 'height': '60.2', 'building_type': ['concrete','wood','steel','laminate']},

       {'length': '42', 'width': '33', 'height': '23', 'building_type': ['concrete_double','wood_double','steel_double']}]

df1 = pd.DataFrame(data)


print(df1)

数据框 2:



data2 = [{'type': 'A1', 'floor': '2', 'model': ['wood','laminate','concrete','steel']},

       {'type': 'B3', 'floor': '4',  'model': ['wood_double','concrete_double','steel_double']}]

df2=pd.DataFrame(data2)

print(df2)

最终数据框:


   length   width   height  building_type                                 type  floor

0   34      58.5    60.2   [concrete, wood, steel, laminate]              A1    2

1   42      33      23     [concrete_double, wood_double, steel_double]   B3    4


RISEBY
浏览 82回答 1
1回答

交互式爱情

pd.merge似乎是这里必要的工具,但我们需要一个不可变的 dtype。list是可变的,不能加入。我们可以将list(mutable) 转换为tupleor frozenset,这两者都是不可变的,可以用来加入。由于示例输出显示顺序无关紧要,我选择了frozenset.这是代码:import pandas as pddata = [{'length': '34', 'width': '58.5', 'height': '60.2', 'building_type': ['concrete','wood','steel','laminate']},       {'length': '42', 'width': '33', 'height': '23', 'building_type': ['concrete_double','wood_double','steel_double']}]df1 = pd.DataFrame(data)print(df1)data2 = [{'type': 'A1', 'floor': '2', 'model': ['wood','laminate','concrete','steel']},       {'type': 'B3', 'floor': '4',  'model': ['wood_double','concrete_double','steel_double']}]df2=pd.DataFrame(data2)print(df2)# Note: Merge fails on mutable dtype# pd.merge(df1, df2, left_on='building_type', right_on='model')# Produces `TypeError: unhashable type: 'list'`# Convert mutable type to immutable type and merge.# `tuple` is best if order matters for you. I am assuming that the# order doesn't matter based on the sample output, so `frozenset` is more# appropriate.df1['building_type'] = df1['building_type'].apply(frozenset)df2['model'] = df2['model'].apply(frozenset)# Now, merge. Note that since column names are different both# 'building_type' and 'model' would be retained. You can remove one of them.final_df = pd.merge(df1, df2, left_on='building_type', right_on='model')final_df = final_df.drop(['model'], axis=1)print(final_df)我机器上的输出:  length width height                                 building_type0     34  58.5   60.2             [concrete, wood, steel, laminate]1     42    33     23  [concrete_double, wood_double, steel_double]  type floor                                         model0   A1     2             [wood, laminate, concrete, steel]1   B3     4  [wood_double, concrete_double, steel_double]  length width height                                 building_type type floor0     34  58.5   60.2             (laminate, wood, steel, concrete)   A1     21     42    33     23  (concrete_double, steel_double, wood_double)   B3     4
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python