首先将您的 csv 保存到数据帧 df 并使用以下函数进行余弦相似度计算。def get_cosine(vec1, vec2): intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection])sum1 = sum([vec1[x]**2 for x in vec1.keys()])sum2 = sum([vec2[x]**2 for x in vec2.keys()])denominator = math.sqrt(sum1) * math.sqrt(sum2)if not denominator: return 0.0else: return float(numerator) / denominatordef text_to_vector(text):word = re.compile(r'\w+')words = word.findall(text)return Counter(words)def get_result(content_a, content_b):text1 = content_atext2 = content_bvector1 = text_to_vector(text1)vector2 = text_to_vector(text2)cosine_result = get_cosine(vector1, vector2)return cosine_result然后遍历 df 并调用如下函数:similarity=[]for ind in df.index:#my_doc="new document should go in here"#prev_doc= "previous document for each index should go in here"cos=get_result(my_doc, prev_doc)similarity.append(cos)max_ind= similarity.index(max(similarity)) 您将获得最相似文档的索引位置