交互式爱情
您可以保留一个数组来跟踪index of elements用于add to the current element.我已经使用父数组修改了您的代码以跟踪它。另外,我更改了一些变量名称(根据我的理解)。public static void maxSum(int[] arr){ int n = arr.length; int[] parent = new int[n]; parent[0] = -1; int lastSum = 0; // last sum encountered int lastPos = -1; // position of that last sum int currSum = arr[0]; // current sum int currPos = 0; // position of the current sum for (int i = 1; i < n; i++) { parent[i] = lastPos; // save the last sum's position for this element // below this it is mostly similar to what you have done; // just keeping track of position too. int probableSum = Integer.max(arr[i] + lastSum, arr[i]); int tSum = currSum; int tPos = currPos; if(probableSum > currSum){ currSum = probableSum; currPos = i; } lastSum = tSum; lastPos = tPos; } System.out.println(currSum); // print sum System.out.println(Arrays.toString(parent)); // print parent array; for debugging purposes. // logic to print the elements int p = parent[n - 1]; System.out.print(arr[n - 1] + " "); while (p != -1) { System.out.print(arr[p] + " "); p = parent[p]; }}我相信代码可以清理很多,但这是以后的练习:)输出:{1,2,3,-1,-3,2,5} => 5 3 1{4,5,4,3} => 3 5更新。添加了一些代码解释lastSum&的值currSum在循环执行期间发生变化。最好通过观察它们的值在循环内如何变化来理解它们。i在循环的第 th 次迭代开始期间,lastSum保存可以添加到第ith 个元素的最大值;i-2所以基本上可以通过迭代到第一个元素 来获得最大值。保存通过迭代到第 th 个元素currSum可以获得的最大值。i-1在循环结束时lastSum添加到第ith 个元素并指定为currSum。如果lastSum小于 0,则将i元素本身指定为currSum。旧值currSum现在称为lastSumlastPos&currPos保存各自总和值的最新索引。在下面显示的每次迭代的所有状态中,最右边的和表示currSum迭代开始时。左侧的值currSum表示lastSum。它们的索引位置分别记录在currPos&lastPos中。par[]保存使用的最后一个索引的值lastSum。该数组稍后用于构造形成最大非相邻和的实际元素集。initiallyidx = -1, 0, 1, 2, 3, 4, 5, 6arr = 0, 1, 2, 3, -1, -3, 2, 5sum = 0 1par = -1i=1 iteration stateidx = -1, 0, 1, 2, 3, 4, 5, 6arr = 0, 1, 2, 3, -1, -3, 2, 5sum = 0 1, ?par = -1, !// before updatecurrSum = 1, currPos = 0lastSum = 0, lastPos = -1// updatingpar[1] = lastPos = -1probableSum = max(2 + 0, 2) = 2 // max(arr[i] + lastSum, arr[i])? = max(1, 2) = 2 // max(currSum, probableSum)! = i = 1// after updatelastSum = currSum = 1lastPos = currPos = 0currSum = ? = 2currPos = ! = 1i=2 iteration stateidx = -1, 0, 1, 2, 3, 4, 5, 6arr = 0, 1, 2, 3, -1, -3, 2, 5sum = 0 1, 2 ?par = -1, -1 !// before updatecurrSum = 2, currPos = 1lastSum = 1, lastPos = 0// updatingpar[2] = lastPos = 0probableSum = max(3 + 1, 3) = 4 // max(arr[i] + lastSum, arr[i])? = max(2, 4) = 4 // max(currSum, probableSum)! = i = 2// after updatelastSum = currSum = 2lastPos = currPos = 1currSum = ? = 4currPos = ! = 2i = 3 iteration stateidx = -1, 0, 1, 2, 3, 4, 5, 6arr = 0, 1, 2, 3, -1, -3, 2, 5sum = 0 1, 2 4 ?par = -1, -1 0 !// before updatecurrSum = 4, currPos = 2lastSum = 2, lastPos = 1//updatingpar[3] = lastpos = 1probableSum = max(-1 + 2, -1) = 1 // max(arr[i] + lastSum, arr[i])? = max(4, 1) = 4 // max(currSum, probableSum) ; no update in ?'s value! = currPos = 2 // as ?'s value didn't update// after updatelastSum = currSum = 4lastPos = currPos = 2currSum = ? = 4currPos = ! = 2i = 4 iterationidx = -1, 0, 1, 2, 3, 4, 5, 6arr = 0, 1, 2, 3, -1, -3, 2, 5sum = 0 1, 2 4 4 ?par = -1, -1 0 1 !// before updatecurrSum = 4, currPos = 2lastSum = 4, lastPos = 2// updatingpar[4] = lastPos = 2probableSum = max(-3 + 4, -3) = 1 // max(arr[i] + lastSum, arr[i])? = max(4, 1) = 4 // max(currSum, probableSum) ; no update in ?'s value! = currPos = 2 // as ?'s value didn't update// after updatelastSum = currSum = 4lastPos = currPos = 2currPos = ? = 4currPos = ! = 2i = 5 iterationidx = -1, 0, 1, 2, 3, 4, 5, 6arr = 0, 1, 2, 3, -1, -3, 2, 5sum = 0 1, 2 4 4 4 ?par = -1, -1 0 1 2 !// before updatecurrSum = 4, currPos = 2lastSum = 4, lastPos = 2// updatingpar[5] = lastPos = 2probableSum = max(2 + 4, 2) = 6 // max(arr[i] + lastSum, arr[i])? = max(4, 6) = 6 // max(currSum, probableSum)! = i = 5// after updatelastSum = currSum = 4lastPos = currPos = 2currPos = ? = 6currPos = ! = 5i = 6 iteration stateidx = -1, 0, 1, 2, 3, 4, 5, 6arr = 0, 1, 2, 3, -1, -3, 2, 5sum = 0 1, 2 4 4 4 6 ?par = -1, -1 0 1 2 2 !// before updatecurrSum = 6, currPos = 5lastSum = 4, lastPos = 2// updatingpar[6] = lastPos = 2probableSum = max(5 + 4, 5) = 9 // max(arr[i] + lastSum, arr[i])? = max(6, 9) = 9 // max(currSum, probableSum)! = i = 6// after updatelastSum = currSum = 6lastPos = currPos = 5currPos = ? = 9currPos = ! = 6after all iteration stateidx = -1, 0, 1, 2, 3, 4, 5, 6arr = 0, 1, 2, 3, -1, -3, 2, 5sum = 0 1, 2 4 4 4 6 9par = -1, -1 0 1 2 2 2通过使用 par[] 并循环直到 par[p] != -1 我们可以获得元素的索引,它实际上形成了一组实际需要的元素。直接查看代码。例如p = last = 6arr[p] = arr[6] = 5 // elementp = par[p] = par[6] = 2arr[p] = arr[2] = 3 // elementp = par[p] = par[2] = 0arr[p] = arr[0] = 1 // elementp = par[p] = par[0] = -1 // stop