从熊猫编写Excel文件,在使用熊猫样式创建的列中设置条形图格式

我有以下数据:


s = '{"Date":{"0":"2016-10-03 00:00:00","1":"2016-10-03 00:00:00","2":"2016-10-03 00:00:00","3":"2016-10-04 00:00:00","4":"2016-10-04 00:00:00","5":"2016-10-04 00:00:00","6":"2016-10-05 00:00:00","7":"2016-10-05 00:00:00","8":"2016-10-05 00:00:00"},"Close":{"0":31.5,"1":112.52,"2":57.42,"3":113.0,"4":57.24,"5":31.35,"6":57.64,"7":31.59,"8":113.05},"Volume":{"0":14070500,"1":21701800,"2":19189500,"3":29736800,"4":20085900,"5":18460400,"6":16726400,"7":11808600,"8":21453100},"Symbol":{"0":"CSCO","1":"AAPL","2":"MSFT","3":"AAPL","4":"MSFT","5":"CSCO","6":"MSFT","7":"CSCO","8":"AAPL"}}'

df = pd.read_json(s)

看起来像这样:


        Date  Close    Volume Symbol

0 2016-10-03  31.50  14070500   CSCO

1 2016-10-03 112.52  21701800   AAPL

2 2016-10-03  57.42  19189500   MSFT

3 2016-10-04 113.00  29736800   AAPL

4 2016-10-04  57.24  20085900   MSFT

5 2016-10-04  31.35  18460400   CSCO

6 2016-10-05  57.64  16726400   MSFT

7 2016-10-05  31.59  11808600   CSCO

8 2016-10-05 113.05  21453100   AAPL

我可以创建以下所需的样式:


format_dict = dict(Date="{:%m/%d/%y}", Close="${:.2f}", Volume="{:,}")

(

    df.style.format(format_dict)

    .hide_index()

    .bar("Volume", color="lightblue", align="zero")

)

其外观如下:

http://img2.mukewang.com/633251420001427906420547.jpg

但是当我使用以下内容写入Excel文件时:


format_dict = dict(Date="{:%m/%d/%y}", Close="${:.2f}", Volume="{:,}")

df_formatted = (

    df.style.format(format_dict)

    .hide_index()

    .bar("Volume", color="lightblue", align="zero")

)

df_formatted.to_excel("demo.xlsx")

它给了我以下几点:

http://img.mukewang.com/6332515200017f8106580417.jpg

我不知道如何解决这个问题。


以下是我为创建此示例的虚拟env安装的软件包:


-> % pip freeze

et-xmlfile==1.0.1

jdcal==1.4.1

Jinja2==2.11.1

MarkupSafe==1.1.1

numpy==1.18.2

openpyxl==3.0.3

pandas==1.0.3

python-dateutil==2.8.1

pytz==2019.3

six==1.14.0


BIG阳
浏览 99回答 2
2回答

qq_笑_17

在 Excel 中,单元格内条形图称为数据条,您可以使用条件格式添加它。我已经演示了如何使用开放pyxl和xlsx写器来做到这一点。我建议使用,因为它允许您选择渐变或纯色背景,而没有此选项并生成具有渐变的数据条。xlsxwriteropenpyxl断续器import pandas as pdfrom xlsxwriter.utility import xl_ranges = '{"Date":{"0":"2016-10-03 00:00:00","1":"2016-10-03 00:00:00","2":"2016-10-03 00:00:00","3":"2016-10-04 00:00:00","4":"2016-10-04 00:00:00","5":"2016-10-04 00:00:00","6":"2016-10-05 00:00:00","7":"2016-10-05 00:00:00","8":"2016-10-05 00:00:00"},"Close":{"0":31.5,"1":112.52,"2":57.42,"3":113.0,"4":57.24,"5":31.35,"6":57.64,"7":31.59,"8":113.05},"Volume":{"0":14070500,"1":21701800,"2":19189500,"3":29736800,"4":20085900,"5":18460400,"6":16726400,"7":11808600,"8":21453100},"Symbol":{"0":"CSCO","1":"AAPL","2":"MSFT","3":"AAPL","4":"MSFT","5":"CSCO","6":"MSFT","7":"CSCO","8":"AAPL"}}'df = pd.read_json(s)def get_range(df, column_name):    """Return coordinates for a column range given a column name.    For example, if "Volume" is the third column and has 10 items,    output is "C2:C10".    """    col = df.columns.get_loc(column_name)    rows = df.shape[0]    # Use 1 to skip the header.    return xl_range(1, col, rows, col)writer = pd.ExcelWriter("output.xlsx", engine="xlsxwriter")df.to_excel(writer, sheet_name="Sheet1", index=False)worksheet = writer.sheets["Sheet1"]range_ = get_range(df, "Volume")worksheet.conditional_format(range_, {'type': 'data_bar', 'bar_solid': True})writer.save()示例输出:开放像素 (不支持实心数据条)from openpyxl.formatting.rule import DataBar, FormatObject, Ruleimport pandas as pds = '{"Date":{"0":"2016-10-03 00:00:00","1":"2016-10-03 00:00:00","2":"2016-10-03 00:00:00","3":"2016-10-04 00:00:00","4":"2016-10-04 00:00:00","5":"2016-10-04 00:00:00","6":"2016-10-05 00:00:00","7":"2016-10-05 00:00:00","8":"2016-10-05 00:00:00"},"Close":{"0":31.5,"1":112.52,"2":57.42,"3":113.0,"4":57.24,"5":31.35,"6":57.64,"7":31.59,"8":113.05},"Volume":{"0":14070500,"1":21701800,"2":19189500,"3":29736800,"4":20085900,"5":18460400,"6":16726400,"7":11808600,"8":21453100},"Symbol":{"0":"CSCO","1":"AAPL","2":"MSFT","3":"AAPL","4":"MSFT","5":"CSCO","6":"MSFT","7":"CSCO","8":"AAPL"}}'df = pd.read_json(s)first = FormatObject(type='min')second = FormatObject(type='max')data_bar = DataBar(cfvo=[first, second], color="ADD8E6", showValue=None, minLength=None, maxLength=None)rule = Rule(type='dataBar', dataBar=data_bar)writer = pd.ExcelWriter("output.xlsx", engine="openpyxl")df.to_excel(writer, sheet_name="Sheet1", index=False)worksheet = writer.sheets['Sheet1']# Add data bar to Volume column.start = worksheet["C"][1].coordinateend = worksheet["C"][-1].coordinateworksheet.conditional_formatting.add(f"{start}:{end}", rule)writer.save()writer.close()示例输出:REPT功能另一种选择是创建单元格内条形图是使用Excel中的函数。它不像数据栏:)REPTimport pandas as pds = '{"Date":{"0":"2016-10-03 00:00:00","1":"2016-10-03 00:00:00","2":"2016-10-03 00:00:00","3":"2016-10-04 00:00:00","4":"2016-10-04 00:00:00","5":"2016-10-04 00:00:00","6":"2016-10-05 00:00:00","7":"2016-10-05 00:00:00","8":"2016-10-05 00:00:00"},"Close":{"0":31.5,"1":112.52,"2":57.42,"3":113.0,"4":57.24,"5":31.35,"6":57.64,"7":31.59,"8":113.05},"Volume":{"0":14070500,"1":21701800,"2":19189500,"3":29736800,"4":20085900,"5":18460400,"6":16726400,"7":11808600,"8":21453100},"Symbol":{"0":"CSCO","1":"AAPL","2":"MSFT","3":"AAPL","4":"MSFT","5":"CSCO","6":"MSFT","7":"CSCO","8":"AAPL"}}'df = pd.read_json(s)writer = pd.ExcelWriter("output.xlsx", engine="openpyxl")df.to_excel(writer, sheet_name="Sheet1", index=False)worksheet = writer.sheets['Sheet1']# Use column E because that is the next empty column.for row, cell in enumerate(worksheet["E"]):    # Add 1 because Python's indexing starts at 0 and Excel's does not.    row += 1    if row != 1:        # Column C corresponds to Volume.        value = f'=REPT("|", C{row} / 1000000)'    else:        value = "Bar"    worksheet[f"E{row}"] = valuewriter.save()writer.close()示例输出:

慕运维8079593

你只是做这是为了显示目的,我们应该分配列formatdf.Volume= df.Volume.map(lambda x: "{:,}".format(x))df#df.to_excel("demo.xlsx")         Date   Close      Volume Symbol0  2016-10-03   31.50  14,070,500   CSCO1  2016-10-03  112.52  21,701,800   AAPL2  2016-10-03   57.42  19,189,500   MSFT3  2016-10-04  113.00  29,736,800   AAPL4  2016-10-04   57.24  20,085,900   MSFT5  2016-10-04   31.35  18,460,400   CSCO6  2016-10-05   57.64  16,726,400   MSFT7  2016-10-05   31.59  11,808,600   CSCO8  2016-10-05  113.05  21,453,100   AAPL
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python