如何实现可微损失函数来计算错误预测的数量?
output = [1,0,4,10]
target = [1,2,4,15]
loss = np.count_nonzero(output != target) / len(output) # [0,1,0,1] -> 2 / 4 -> 0.5
我已经尝试了一些实现,但它们是不可区分的。RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
def hamming_loss(output, target):
#loss = torch.tensor(torch.nonzero(output != target).size(0)).double() / target.size(0)
#loss = torch.sum((output != target), dim=0).double() / target.size(0)
loss = torch.mean((output != target).double())
return loss
也许有一些类似但差分的损失函数?
ABOUTYOU
相关分类