我正在尝试在最终将用于形状检测的实时流上使用adapativeThreshold。常规阈值没有显示足够的我想看到的。当我使用下面的代码时,常规阈值按预期出现,但由于某种原因自适应阈值比原来的要薄得多,我在视图中看不到任何东西。好像有什么事情发生了,但我不知道是什么。关于如何使自适应阈值窗口全尺寸的任何想法?
这是我在每个窗口中运行程序时看到的:
#import packages
from documentscanner.pyimagesearch.transform import four_point_transform
from pyimagesearch.shapedetector import ShapeDetector
from skimage.filters import threshold_local
import numpy as np
import cv2
import imutils
def draw_Contours(screen, points):
cv2.drawContours(screen, [points], -1, (0, 255, 0), 2)
cv2.imshow("Outline", screen)
def nothing(x):
#any operation
pass
#access video camera
cap = cv2.VideoCapture(0)
cv2.namedWindow('Trackbars')
cv2.createTrackbar('min_edge', 'Trackbars', 75, 100, nothing)
cv2.createTrackbar('max_edge', 'Trackbars', 110,300, nothing)
while True:
_, frame = cap.read() #read video camera data
minedge = cv2.getTrackbarPos('min_edge', 'Trackbars')
maxedge = cv2.getTrackbarPos('max_edge', 'Trackbars')
#convert image to gray scale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
#blur = cv2.GaussianBlur(frame, (5, 5), 0)
#edged = cv2.Canny(gray, minedge, maxedge)
#threshhold instead of edging
thresh = cv2.threshold(gray, 60, 255, cv2.THRESH_BINARY)[1]
thresh2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY, 11, 2)[1]
thresh3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY, 11, 2)[1]
#find contours in edges image, keeping the largest ones, and initialize the screen contour/shapedetect
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
sd = ShapeDetector()
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]
慕沐林林
相关分类