Scipy LDL分解返回意外结果

我生成了一个随机的 5*5 矩阵x,如下所示:

>>> x = np.random.randn(5,5)

并使用如下分解对其进行scipy.linalg.ldl分解:

>>> l, d, p = la.ldl(x)

使用l,dp想返回 x。我以为我可以做到以下几点:

>>> l[p,:] @ d @ l[p,:].transpose() - x

但这并没有像我预期的那样给我零。谁能解释我哪里出错了?

我的目标是获得下对角矩阵L,这样x = LDL^T就不需要行置换矩阵p,但我对 scipy 给出的输出感到非常困惑。


ibeautiful
浏览 105回答 1
1回答

哈士奇WWW

LDL 分解算法仅适用于 Hermitian/对称矩阵。您正在向它传递一个具有随机值的矩阵,该矩阵不太可能是对称的。此外,矩阵乘法应该在不将置换矩阵应用于下三角矩阵的情况下进行。将非对称矩阵传递给 时scipy.linalg.ldl,仅引用矩阵的下三角部分或上三角部分,具体取决于lower关键字参数的值,默认为True。我们可以看到这样做的效果np.isclose():>>> x = np.random.randn(5,5)>>> l, d, p = la.ldl(x)>>> np.isclose(l.dot(d).dot(l.T) - x, 0)[[ True False False False False] [ True  True False False False] [ True  True  True False False] [ True  True  True  True False] [ True  True  True  True  True]]在这里,我们看到矩阵的上三角部分被假定为对称的,因此算法返回的值在这种情况下是正确的。下面,我们传递la.ldl一个实际的对称矩阵,得到预期的结果。>>> x = np.array([[1, 2, 3],                  [2, 4, 5],                  [3, 5, 6]])>>> l, d, p = la.ldl(x)>>> print(np.isclose(l.dot(d).dot(l.T) - x, 0))[[ True  True  True] [ True  True  True] [ True  True  True]]如果您正在寻找一般的 LDL^T 分解,而没有 permutations,这将进一步减少矩阵的域。您的矩阵也需要是正定的。下面是一个这样的矩阵示例:>>> x = np.array([[2, -1, 0],                  [-1, 3, -1],                  [0, -1, 4]])>>> l, d, p = la.ldl(x)>>> larray([[ 1. ,  0. ,  0. ],       [-0.5,  1. ,  0. ],       [ 0. , -0.4,  1. ]])>>> darray([[2. , 0. , 0. ],       [0. , 2.5, 0. ],       [0. , 0. , 3.6]])>>> parray([0, 1, 2], dtype=int64)如您所见,排列p是[0, 1, 2],并且l已经是下三角形。
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python