我试图找到一种方法来使用不同的方法对数据帧进行并行处理,如本教程所示:https ://www.youtube.com/watch?v= fKl2JW_qrso (min >18:26)。但结果显示我出了点问题。代码的想法是在数据框中创建一个新列 ['分母'],其中包含“basalareap”、“basalareas”、“basalaread”列中每个字段的行和。任何建议这里有什么问题,我在打印时得到了这个奇怪的结果?此外,还有其他方法可以最有效地进行并行化吗?
import pandas as pd
import numpy as np
import concurrent.futures
from multiprocessing import cpu_count
np.random.seed(4)
layer = pd.DataFrame(np.random.randint(0,25,size=(10, 3)),
columns=list(['basalareap', 'basalareas', 'basalaread']))
def denom():
layer['denominator'] = layer[["basalareap","basalareas","basalaread"]].sum(axis=1)
data_split = np.array_split(layer,cpu_count())
with concurrent.futures.ProcessPoolExecutor() as executor:
results = [executor.submit(denom) for i in data_split]
print(results)
>>>print(results)
[<Future at 0x1b45e325108 state=finished raised BrokenProcessPool>,
<Future at 0x1b45e357708 state=finished raised BrokenProcessPool>,
<Future at 0x1b45e3577c8 state=finished raised BrokenProcessPool>,
<Future at 0x1b45e357888 state=finished raised BrokenProcessPool>,
<Future at 0x1b45e357948 state=finished raised BrokenProcessPool>,
<Future at 0x1b45e357a48 state=finished raised BrokenProcessPool>,
<Future at 0x1b45e357b08 state=finished raised BrokenProcessPool>,
<Future at 0x1b45e357bc8 state=finished raised BrokenProcessPool>]
我的系统:Windows 10 python 3.7.4
繁花如伊
手掌心
随时随地看视频慕课网APP
相关分类